Learning goals of the week:

- the logic behind error propagation uncertainties
- what is a probability density function

- parent vs. sampling distributions

- expectation value variance and their estimators

Week 2
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Error propagation (l)
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Propagation of statistical uncert.

(Most of the times, one cannot use standard error propagation for systematic uncertainties!
We will come back to this later.)

We start with the problem of propagating the statistical uncertainties of two measurements
which we can assume to be uncorrelated (the first measurement does not affect in any
way the second measurement)

Let’s begin from the easiest example to get the logic:
suppose you have two measurements x = 6x and y + &y and you want to sum them
(e.g. two volumes of liquid): x+y

The goal is to convey the uncertainty on x+y. First ask yourself what you mean by x+0x.

We assume here that when quoting x+ 6x we want to convey that the true (unknown)
value of the quantity we are measuring is in the interval [x-6x, x+06X].

This way we assume the true value is an unknown fixed value, while the measured

guantities are uncertain numbers (random variables), and the interval [x-0x, X+6x]
contains the true value with some confidence (see later).
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Frequentist vs. Bayesian digression

The opposite approach is taken in Bayesian probability / statistics-inference.

The Frequentist perspective is that the true parameter value 6 is fixed but unknown, while

the measured B is a random variable a function of the dataset (which is seen as random).
The Bayesian perspective uses probability to reflect “degrees of certainty” or “states of
knowledge”. The dataset is directly observed and so is not random. On the other hand, the
true parameter 6 is unknown or uncertain and thus is represented as a random variable.

This simple difference leads to profoundly different schools of thought. We will come back
with the Bayes theorem later.

In this classes we will use the frequentist approach. The “justification” to do this is that

for the purpose of the experiments you will encounter here you should never end up in a
situations where priors can have an impact on the outcome of the measurement. (e.g. you
will always have large statistics at hand and your values will always be away from physical
boundaries). The Frequentist/Likelihood approach is justified.

It is important that once in your life you understand the two approaches.

Suggested reading: “Bayesian Reasoning in Data Analysis : A Critical Introduction”
G. D’Agostini

General public: “The theory that would not die” Sharon Bertsch McGrayne
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Propagation of statistical uncert.

Now that we agree on what we mean by x+0x, let’s see how to propagate it.

The uncertainty on x+y can be estimated as the half the difference between the largest
and the smallest value that the results can take:

N

X+y)max = X+06X + y+0Oy
X+y)min = X -OX + y -0y

N

l.e. X+y =( OX+0V )
What's wrong with this ? This is an overestimate of the uncertainty.

Because you assume the &x covers a range of possible measurements outcomes (we

haven't said yet how those outcome are distributed) quoting 6x+0y assumes the extreme
fluctuations of the measurement in both x and .
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Gaussian limit

| et’s look at where dx come from.

Typically each measurement is affected by several sources of uncertainties which all
sum up to the final value of ox.

Example: measure the weight of an object with a scale.
Sources of uncertainty: movements, parallax, rounding, etc...

Example: measure the momentum of a charged particle by fitting a curved track.
Sources of uncertainty: single hit resolution, multiple scattering losses, etc...

Imagine you could switch off all sources of uncertainties but one and repeat the
measurement several times.

GO

We don't have any good reason to
assume how the measurement
would be distributed, so let’s "
assume for example that they all
are flat distributed (iry to take any
other shape).
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Gaussian limit

What happens if | sum N uncorrelated
sources of uncertainties, each of
which would produce a flat
distribution of the measured values ?

It approaches a Gaussian distribution !

Central Limit Theorem (we'll see it
later with pdf limits)

The convention is to quote as

uncertainty “0x” the 1 standard deviation or
‘10" gaussian interval

(or 68% confidence interval).

There is nothing special behind using
68%. It's just conveniently corresponding
to 10.
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Propagation as convolution

Knowing this, we use/interpret the 6x as the “width of the gaussian”.
Now what happens when you add x+6x + y+0y ?

Let’s pretend we're repeating the measurements of x and y several times, add them
and fill a histogram with the result. (Assume a gaussian resolution effect on the measured
values, and again x and y uncorrelated)

: F A Soc '
EME— X ‘width” = 2 LAY “width” = 2 % - X4V “width” = sqrt(22 + 22)
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This is the reason why we quote the uncertainty on the sum as
the sum in quadrature of &6x and oy = sqrt(dx2 + &dy2) = 6x @ Oy

This should’t come as a surprise: you are convoluting two gaussians.

The same reasoning leads to the same result (6x @ &y) for the difference x-y. (try it yourself)
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General formula

Let’s take two gaussian-distributed variables x, y centred at xo and yo respectively with
standard deviations ox, oy, but now let's compute how a generic function of x and y is
distributed (not just their sum). Expand around (Xo, Yo) and see how “wide” it is:

o, o,
Flr,) o flrow) + S0 @—wo)+ S (- )
L T=x( Y Yy=yo
| | | |
constant constant T constant
Gaussian distributed  Gaussian distributed
centred at zero centred at zero

First term can be ignored: adding a constant k to x shifts the centre of the gaussian to k,
but we're interested in the width o (the uncertainty) unchanged.

Second and third terms: multiplying x by a constant k, shift the centre to kxo,
(here the gaussians are centred at zero so they don’t move)

of and increase the width as kox
here K = -

or|
T=x0

of of

The effect on the width of the gaussians are Oz and 9
oxr| Yl,=
T=x( Yy=yo
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Propagation of statistical uncert.

Putting everything together the width of f(x,y) is

of Y. :
\ (8_£E =T J:U) " (ay Y=Yyo Jy)

Which trivially generalizes to the case of N-variables f(xl, Ce ,:EN) as:

O'f:
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Mauro

Propagation of statistical uncert.

Done

From the general formula you can verity you can find the usual results:

ga

- Severian Gvasaliya ETHZ

VP - Data Analysis Toolbox

X+Y, X-y
Sum in quadrature of the
absolute uncertainties

Xy, X[y
Sum in quadrature of the
relative uncertainties
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Probability Density Functions
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PDF: Probability Density Function

We define a random variable as any function of the data.

The event space is the set of all possible values that the random variable can take.
The event space can be finite or infinite.

A random variable (or better the event space) and the data themselves can be
discrete or continuous.

The distribution f(x) describing the random variable x is called probability density function
(or pdf for short)

The probability for the random variable x to be in the interval [x, x+dx] is f(x)dx
NB: f(x) is a probability density (with dimensions [x]-1), f(x)dx is a probability

Properties:
- f(x) =0 over the event space

- f(x) is normalized to unity over the event space /f(:z:)da: =1
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Parent vs. sampling distribution

We will call:
“parent distribution” the (unknown) true distribution of the data
“sampling distribution” any dataset obtained by sampling the parent distribution

Ditferent sampling of the same parent distribution will result in different datasets.
(another name for sample distribution is realization)
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Characterize a dataset
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Expectation value

The expectation value of a random variable x (or mean or first moment) is defined as:

continuous ‘ discrete

l.e. its the probability-weighted average of all possible values.

Example: rolling a die E[x] = 1*1/6 + 2*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6"1/6 = 3.5

Example: in guantum mechanics the eigenvalues

(outcomes of a measurement) are weighted on their <A>¢ = Z a; ‘ <¢‘¢]> ‘2

probability to occur ,
J

The expectation value is a linear operator:

<a-gx)+b-hlr) >=a<g(x)>+b<h(xr)>

Notice that < fg >#< f >< g > unless the f and g are independent

17
Mauro Donega - Severian Gvasaliya ETHZ VP - Data Analysis Toolbox



Variance and standard deviation

The variance is a measure of the spread of the data around the mean p of the pdf

wmax

V(z) =< (x — u)? >= / (r — w2 f(@)de =< o > i3

min

A useful property: V(CL + baj) — bQV(ZE)

an offset to the variable doesn’t change how the data are distributed around their mean:;
scaling the variable by a constant b increases the variance by b2

The standard deviation is defined as the square root of the variance O = \/V(CIS’)

NB: these definitions rely on the knowledge of the parent distribution
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Estimators for mean and variance

In general the true values of the mean and the standard deviation of the parent
distribution are not known and they need to be estimated.

Un unbiased estimator of the true mean p is given by the expectation value <x>
(we will come back to the meaning of “unbiased” when we will talk about parameter

estimation)

. . o 1
Given a dataset {Xi} i=1..N, the arithmetic mean of the dataset 7% = N Z X;
(or average) is: i=1

N
The mean of a function of the data is f= kS Z f(X;)
B i=1 Z
When values are classified by their frequency (e.g. a histogram _ 1 = .
with m bins and n; entries per bin) we can rewrite the mean as L= N Z Njy
j=1
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Estimators for mean and variance

When we know the true mean y, the variance can then be estimated as:

Viz) =< (x —pu)* >

otherwise the true mean p has to be replaced by the estimated one and the variance

becomes:
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Full width at half maximum

Another way to characterize the spread of the data if to compute the FWHM.

Fix) 4 g | [wiki]

Xy

For a gaussian distribution (see later) the relation between FWHM and the standard
deviation is

FWHM = 2v21n2 o ~ 2.355 o.

21
Mauro Donega - Severian Gvasaliya ETHZ VP - Data Analysis Toolbox



Other means

Weighted mean: typically used to combine measurements with ZZ W; X

different resolutions given a dataset {Xi} i=1..N and their (event by Xweighted = S w;
event) uncertainties {oi} i=1..N, the weighted mean is defined as: G

where wi = 1/0% is called the weight of the event.

Example: x = 1+0.1 ; y = 2+0.1 Xweitghted = 1.9
X=1x0.1;y =2+£0.05 Xweitghted = 1.8
X=1+0.1;y =2+0.001 Xweitghted = 1.99

Geometric mean: used to characterize the mean of a

geometric sequence ( a, ar, arz, a//“?’, ar4, c. ) g = VT To- ... TN

(defined only for values of the same sign)

The geometric mean of two numbers, a and b, is the length of one side of a square
whose area is equal to the area of a rectangle with sides of lengths a and b.
Example: A population of bacteria grows from 2000 to 9000 in 3 days.
What is the daily grow (assuming a constant rate r) ? (same for interest rates in finance)
1stday: n1 = 2000 + 2000 r
2nd day: n2 =n1 +nl1r=2000 (1+r)2
3rd day: N3 = N2 + N2 r = 2000 (1+r)3= 9000 = 1+ = /4.5 = 65.1%
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Other means

Harmonic mean: used to characterize the mean value of a N

harmonic sequence ( 1 1 1 1 ) Hh = S 1/ x

o a+d’ a+2d a+3d°

Example: A car travels at 80 km/h for the half of the trip and 100 km/h for the
second halt. What's his average speed? 2/(1/80+1/100) = 89 km/h
(here you are averaging over periods of time)

Mauro Donega - Severian Gvasaliya ETHZ VP - Data Analysis Toolbox



Moments summary

Definition

Mechanics

sum / total probability total mass
?I_OO
o0
mean / expectation value lu — / xf (ZE') dﬂ? centre of mass
— OO
+00
variance 0% = / (:I: — ,u)zf(a:‘)d:v moment of inertia
— OO
+ 00 3
'CL‘ J—
skewness V1 = / ( 3,“) f(x)dx
— 00 o
400 _\4
kurtosis Kurt[X] = / (@ 04,u) f(x)dx — 3 -
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Other properties: median, most
probable

i

The median (or 50% quantile) of a dataset is the 345,000
value which splits the frequency distributions into two
' $15,000
sized halves %%
LTmedian , , +00 , , $10,000
/OO f(z')dz" = /x | f(z")dx" = 0.5 %*ARITHMETICAL AVERAGE
median $5-700
The most probable value (mode) %gﬁﬁ

$5,000

of a dataset is the value that %ﬁ%ﬁ

occurs more frequently $3.700

W «MEDIAN (,'23;,": viartywed

$3,000

BeSRRRERRAA )

$2,000
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Cumulative and quantiles

50%

50%

f(X) 45000

Xq = quantile of order g (or g-point), 30000 |
with 0< g < 1, of a distribution is 25000 |

the value of x such that F(xq) = g 20000

The quantile is just the inverse of the cdf 10000
Xg = F‘1(Q) 5000 |
F(x) ™%

80% os

06}

median = F(xso = 0) = 50%

04}

20% o2

Quantiles with a name:

quartiles = 0%, 25%, 50%, 75%, 100% 0.0/
percentiles = 0%,1%,2%,..., 98%, 99%, 100%
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Error propagation (ll)
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Uncertainty on the mean

This is probably the most common case you will encounter.

Suppose you have n measurements of a single quantity x. You estimate the best value of x
as the average of the measurements z =>_.z;/N

The difference between & and u (the true unknown quantity) is, assuming the CLT,
described by a gaussian distribution with variance:

Var(s) = (@-w?

| 2 The standard deviation of the mean
S szi —u> ) falls like 1/4/n
1 2 n(n —1) 2
= En(x ) + e (Tix5)it; — 2(Z) + 1
<$2> n—1 4 2 ‘o :
— 4+ ue = This is the reason why if you want to
<;j2 ) 2>” I improve the uncertainty on your
= - g - measurement by a factor of 2 you

need 4 times more statistics

28
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Uncertainty on the mean

Example Take a photo-detector with an energy resolution of 50 keV. If a mono-energetic
photon (coming e.g. from a certain nuclear decay) is registered, its energy is only known to
a precision of 50 keV. If 100 (mono-energetic) photons are measured (all coming from the
same nuclear decay), then the uncertainty of the mean energy is only 50/4/100 = 5 keV. For
a resolution of 1 keV we need 2500 events. So, to double the precision, you need four times
more photons. O
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Uncertainty on the weighted mean

Intuition: n measurements x,with different uncertainties o.: the measurements with large
uncertainties will "“matter” less than measurements with small uncertainties.

Example You have two measurements of x: 10 & 0.1 and 8 &£ 5. In this case the second
measurement will have basically no weight in your knowledge about x. O

The correct estimation of the uncertainty is obtained from the weighted average of the
measurements:

Zazi/af 9 1

— O - —

> 1/07 T XV

Example: compute the best estimate of the Higgs mass from:
- ATLAS: my=125.36 + 0.41 GeV
- CMS:  m,=125.02 + 0.30 GeV
We find: my= 125.14 + 0.24 GeV.
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Uncertainty on the weighted mean

Comments:
- weighted mean collapses to the arithmetic mean when all uncertainties are equal

- "Few measurements with small uncertainties are better than many measurements
with large uncertainties”. Let the uncertainty of a first set of n; measurements of
the quantity x be o4. The uncertainty on the mean is

oz = o1/y/n1. If we have a second set of n, measurements with uncertainty o, and
O, > 04 then to get to the same precision you need to collect more data as:

2
n=m ()
- must be taken with a grain of salt if the individual results and their uncertainty’s
deviate too much from each other.

Example: An experiment measures in one hour 100 + 10 events, and another
experiment measures in one hour only 1 + 1 events. From the weighted mean we
would have 2 = 1 events. But the (unweighted) mean would give 50.5+5.

Don't blindly quote the mean or the weighted mean: go back and understand why you
get such different outcomes (it might be a problem of some parameters of the data
taking, some faulty equipment, some trivial mistake etc...).

In case you can't find any reason for that, it would be wise to give the full information
at hand and preset both results
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