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Week 2

Learning goals of the week: 
- the logic behind error propagation uncertainties 
- what is a probability density function  
- parent vs. sampling distributions 
- expectation value variance and their estimators
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Error propagation (I)
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Propagation of statistical uncert.

Let’s begin from the easiest example to get the logic: 
suppose you have two measurements  x ± δx and y ± δy and you want to sum them 
(e.g. two volumes of liquid): x+y 

The goal is to convey the uncertainty on x+y. First ask yourself what you mean by x±δx. 

We assume here that when quoting x+ δx we want to convey that the true (unknown) 
value of the quantity we are measuring is in the interval [x-δx, x+δx]. 

This way we assume the true value is an unknown fixed value, while the measured 
quantities are uncertain numbers (random variables), and the interval [x-δx, x+δx] 
contains the true value with some confidence (see later).

(Most of the times, one cannot use standard error propagation for systematic uncertainties! 
We will come back to this later.)

We start with the problem of propagating the statistical uncertainties of two measurements 
which we can assume to be uncorrelated (the first measurement does not affect in any 
way the second measurement)
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Frequentist vs. Bayesian digression 
The opposite approach is taken in Bayesian probability / statistics-inference. 

The Frequentist perspective is that the true parameter value θ is fixed but unknown, while 
the measured θ is a random variable a function of the dataset (which is seen as random).  
The Bayesian perspective uses probability to reflect “degrees of certainty” or “states of 
knowledge”. The dataset is directly observed and so is not random. On the other hand, the 
true parameter θ is unknown or uncertain and thus is represented as a random variable.  

This simple difference leads to profoundly different schools of thought. We will come back 
with the Bayes theorem later. 

In this classes we will use the frequentist approach. The “justification” to do this is that  
for the purpose of the experiments you will encounter here you should never end up in a 
situations where priors can have an impact on the outcome of the measurement. (e.g. you 
will always have large statistics at hand and your values will always be away from physical 
boundaries). The Frequentist/Likelihood approach is justified. 

It is important that once in your life you understand the two approaches. 
Suggested reading: “Bayesian Reasoning in Data Analysis : A Critical Introduction”  
                                   G. D’Agostini 
General public:        “The theory that would not die” Sharon Bertsch McGrayne

^
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Propagation of statistical uncert.
Now that we agree on what we mean by x+δx, let’s see how to propagate it. 

The uncertainty on x+y can be estimated as the half the difference between the largest 
and the smallest value that the results can take: 

(x+y)max = x+δx + y+δy 
(x+y)min  = x -δx + y -δy 

i.e. x+y ±( δx+δy ) 

What’s wrong with this ? This is an overestimate of the uncertainty. 

Because you assume the δx covers a range of possible measurements outcomes (we 
haven’t said yet how those outcome are distributed) quoting δx+δy assumes the extreme 
fluctuations of the measurement in both x and y.

1/2 * [ (x+δx + y+δy) - (x-δx + y-δy) ] = 
1/2 * [ 2 δx + 2 δy] = δx+δy 
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Gaussian limit
Let’s look at where δx come from. 

Typically each measurement is affected by several sources of uncertainties which all 
sum up to the final value of δx. 

Example: measure the weight of an object with a scale.  
Sources of uncertainty: movements, parallax, rounding, etc...  

Example: measure the momentum of a charged particle by fitting a curved track. 
    Sources of uncertainty: single hit resolution, multiple scattering losses, etc… 

Imagine you could switch off all sources of uncertainties but one and repeat the 
measurement several times.  

#e
nt

rie
s

measured value

We don’t have any good reason to 
assume how the measurement 
would be distributed, so let’s 
assume for example that they all 
are flat distributed (try to take any 
other shape).
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Gaussian limit
What happens if I sum N uncorrelated 
sources of uncertainties, each of 
which would produce a flat 
distribution of the measured values ?

N=1 N=2

N=3 N=4

N=5 N=6

It approaches a Gaussian distribution !
Central Limit Theorem  (we’ll see it  
later with pdf limits)

The convention is to quote as  
uncertainty “δx” the 1 standard deviation or  
“1σ” gaussian interval  
(or 68% confidence interval). 

There is nothing special behind using 
68%. It’s just conveniently corresponding 
to 1σ.
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Propagation as convolution
Knowing this, we use/interpret the δx as the “width of the gaussian”.  
Now what happens when you add  x±δx + y±δy ? 

Let’s pretend we’re repeating the measurements of x and y several times, add them  
and fill a histogram with the result. (Assume a gaussian resolution effect on the measured 
values, and again x and y uncorrelated)

“width” = 2x “width” = 2y “width” = sqrt(22 + 22)
            ~  2.8 

x+y

This is the reason why we quote the uncertainty on the sum as 
the sum in quadrature of δx and δy = sqrt(δx2 + δy2) = δx ⊕ δy
This should’t come as a surprise: you are convoluting two gaussians.

The same reasoning leads to the same result (δx ⊕ δy) for the difference x-y. (try it yourself)
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General formula
Let’s take two gaussian-distributed variables x, y centred at x0 and y0 respectively with  
standard deviations σx, σy, but now let’s compute how a generic function of x and y is 
distributed (not just their sum). Expand around (x0, y0) and see how “wide” it is:

constant constant
Gaussian distributed  

centred at zero
Gaussian distributed  

centred at zero

First term can be ignored: adding a constant k to x shifts the centre of the gaussian to k,  
                                          but we’re interested in the width σ (the uncertainty) unchanged. 
Second and third terms: multiplying x by a constant k, shift the centre to kx0,  
                                        (here the gaussians are centred at zero so they don’t move)  
                                        and increase the width as kσx

The effect on the width of the gaussians are and
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Propagation of statistical uncert.
Putting everything together the width of f(x,y) is

Which trivially generalizes to the case of N-variables                                 as:
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Propagation of statistical uncert.
40 CHAPTER 3. MEASUREMENTS UNCERTAINTIES

z = f(x, y) Uncertainty
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Table 3.2.1: Some examples of error propagation for two uncorrelated variables. You can
read the product/quotient formula as: the percentage of fraction error adds in quadrature
(i.e. if x ± 3%, y ± 4% then the uncertainty on x · y and x/y is ±5%); same is true for the
reciprocal, the percentage error on a quantity and its reciprocal are the same.
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This approximation is only true if the uncertainties are small, i.e. the first derivative must
not vary too much within the neighborhood of a few �. The derivative should be estimated
at the true value of x and when that is unknown its measured value is used.

3.2.2 Function of several variables

In the case of a function f(x, y) of two variables x and y, we repeat the Taylor expansion to
the first order:
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Again we assume that the uncertainties are small, which allows us to drop the higher-order
terms of the Taylor expansion. We thus get the result:
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From the general formula you can verify you can find the usual results:

x+y, x-y 
Sum in quadrature of the  
absolute uncertainties

xy, x/y 
Sum in quadrature of the  
relative uncertainties
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Probability Density Functions
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PDF: Probability Density Function
We define a random variable as any function of the data.  

The event space is the set of all possible values that the random variable can take.  
The event space can be finite or infinite. 

A random variable (or better the event space) and the data themselves can be  
discrete or continuous. 

The distribution f(x) describing the random variable x is called probability density function 
(or pdf for short) 

The probability for the random variable x to be in the interval [x, x+dx] is f(x)dx 
NB: f(x) is a probability density (with dimensions [x]-1), f(x)dx is a probability 

Properties: 
- f(x) ≥0 over the event space 

- f(x) is normalized to unity over the event space 
Z

f(x)dx = 1
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Parent vs. sampling distribution
We will call: 

“parent distribution” the (unknown) true distribution of the data 
“sampling distribution” any dataset obtained by sampling the parent distribution 

Different sampling of the same parent distribution will result in different datasets.  
(another name for sample distribution is realization) 
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Characterize a dataset
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Expectation value
The expectation value of a random variable x (or mean or first moment) is defined as:

10 CHAPTER 1. PROBABILITY

Figure 1.10.2: The distribution of the monthly income of Americans around the year 1950.
This pictorial representation explains well the di↵erences between mean, mode and median.
Which of the three describes the most important property? (Taken from [8])

1.10 Quantiles

Quantiles are values taken at regular intervals from the inverse of the cdf of a random variable.
The quantiles are the data values marking the boundaries between consecutive subsets. If a
set of data is split into two equally sized parts, then the value in the middle is the median.
If the set is split up further, i.e. into four equally sized parts, then the four values are called
quartiles Q1, Q2, Q3 and Q4. The value of Q2 corresponds to the median. Similarly, a set
of data can also be split up into ten parts (deciles) or into a hundred parts (percentile).

1.11 Expectation value

The expectation value of a random variable x (or first moment) is defined as:

< x >=

Z 1

�1
x
0
f(x0)dx0 (1.11.20)

1.12. VARIANCE AND STANDARD DEVIATION 11

and for discrete variables r as:
< r >=

X
riP (ri). (1.11.21)

The expectation value of functions h(x) is defined by < h >=
R
h(x0)f(x0)dx0.

The expectation value is a linear operator, i.e.

< a · g(x) + b · h(x) >= a < g(x) > + b < h(x) >, (1.11.22)

but in general it is < fg > 6=< f >< g >. The equality is true only if f and g are independent.

1.12 Variance and Standard Deviation

The expectation values of xn and of (x� < x >)n are called the n
th algebraic moment µn

and the n
th central moment µ0

n, respectively. The first algebraic moment µ1 is equal to the
expectation value < x >. It is usually just called µ. The second central moment (the first
central moment is obviously zero) is a measure for the width of a probability density and is
called variance V (x). Its square root is called the standard deviation �:

V (x) =< (x� < x >)2 >=< x
2
> � < x >

2= �
2
. (1.12.23)

It is important to notice that quantities like the variance or the standard deviation are
defined using expectation values, but they can only be determined if the “true” underlying
probability density of the sampling distribution is known. Often we deal only with a reduced
set of data, drawn from the sampling distribution from which we neither know the expectation
value nor the variance exactly. In this cases we define the sample variance, called s

2, as:
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The value of s2 can be understood as the best estimate of the “true” variance of the basic
population. The origin of the factor 1

N�1 instead of the usual 1
N

will become clear when we
will discuss the theory of estimators (Ch. 6).

Example: Tab. 1.12.1 collects some of the quantities defined above, for the Maxwell distri-
bution. The probability density for the magnitude of the velocity v of molecules in an ideal
gas at temperature T is given by

f(v) = N · (m/2⇡kBT )
3
2 exp(�mv

2
/2kBT ) · 4⇡v2. (1.12.25)

Here, m is the mass of the molecule and kB is the Boltzmann constant. 2

1.12.1 Higher Moments

The skewness �1 is often defined as
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0
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1

�3
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1

�3
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3
> �3 < x >< x

2
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3). (1.12.26)

continuous discrete

The expectation value is a linear operator:
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Notice that                                      unless the f and g are independent 
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Example: in quantum mechanics the eigenvalues 
(outcomes of a measurement) are weighted on their 
probability to occur 

hAi =
X

j

aj |h |�ji|2

i.e. it’s the probability-weighted average of all possible values. 

= E[x] = E[x]

Example: rolling a die E[x] = 1*1/6 + 2*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6  = 3.5
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Variance and standard deviation
The variance is a measure of the spread of the data around the mean μ of the pdf

A useful property:  

an offset to the variable doesn’t change how the data are distributed around their mean; 
scaling the variable by a constant b increases the variance by b2

V (a+ bx) = b2V (x)

The standard deviation is defined as the square root of the variance � =
p

V (x)

NB: these definitions rely on the knowledge of the parent distribution

V (x) =< (x� µ)2 >=

Z xmax

xmin

(x� µ)2f(x)dx =< x2 > �µ2
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Estimators for mean and variance
In general the true values of the mean and the standard deviation of the parent 
distribution are not known and they need to be estimated. 

Un unbiased estimator of the true mean μ is given by the expectation value <x> 
(we will come back to the meaning of “unbiased” when we will talk about parameter 
estimation)

Given a dataset {Xi} i=1..N, the arithmetic mean of the dataset  
(or average) is: 

8 CHAPTER 1. PROBABILITY

variable can only have certain values it is called a discrete variable. In the same manner,
data described by discrete or continuous variables are called discrete data or continuous data
respectively. The distribution f(x) of a random variable x is called probability density
function (p.d.f.). f(x0)dx0 is the probability to find x in the interval between x

0 and x
0+dx

0

and it is normalized
R +1
�1 f(x0)dx0 = 1 (the probability to find x anywhere in its event space

is 1). Furthermore it is important to notice that f(x) is not a probability but f(x)dx is.

1.8 Cumulative distribution function

Let x be a one-dimensional continuous random variable distributed according to f(x). The
cumulative distribution function (cdf) F (x0) gives the probability that the random
variable x will be found to have a value less than or equal to x

0:

F (x0) =

Z
x
0

�1
f(x)dx (1.8.12)

It follows trivially that F (�1) = 0 and F (+1) = 1. The function F is a monotonously
(but not necessarily strictly monotonously) rising function of x. It does not need to be a
continuous function, but it needs to be smooth in the limits ±1. The probability density
function f(x) is then simply f(x) = dF (x)/dx. Note that the function F is dimensionless
whereas the function f has dimension 1/x. The probability to observe the random variable
between two values x1 and x2 can be written in terms of the cdf as:
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The relationship between f and F is depicted in Fig. 1.8.1.
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see also the weighted mean in Sec. 3.4

When values are classified by their frequency (e.g. a histogram 
with m bins and nj entries per bin) we can rewrite the mean as
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Estimators for mean and variance
When we know the true mean μ, the variance can then be estimated as:

otherwise the true mean μ has to be replaced by the estimated one and the variance  
becomes:

V (x) =< (x� µ)2 >=

Z xmax

xmin

(x� µ)2f(x)dx =< x2 > �µ2

s2 =
1

N � 1

X

i

(xi � x̄)2 =
1

N � 1

X

i

 
xi �

1

N

X

i

xi

!2
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Full width at half maximum
Another way to characterize the spread of the data if to compute the FWHM.

[wiki]

For a gaussian distribution (see later) the relation between FWHM and the standard 
deviation is

FWHM = 2

p
2 ln 2 � ⇡ 2.355 �.
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Other means
Weighted mean: typically used to combine measurements with 
different resolutions given a dataset {Xi} i=1..N and their (event by 
event) uncertainties {σi} i=1..N, the weighted mean is defined as:

Xweighted =

P
i wixiP
i wi

where wi = 1/σ2i   is called the weight of the event. 

Geometric mean: used to characterize the mean of a 
geometric sequence (                                                ) 
(defined only for values of the same sign) 

The geometric mean of two numbers, a and b, is the length of one side of a square 
whose area is equal to the area of a rectangle with sides of lengths a and b.

Example: A population of bacteria grows from 2000 to 9000 in 3 days. 
What is the daily grow (assuming a constant rate r) ? (same for interest rates in finance) 

1st day:  n1 = 2000 + 2000 r 
2nd day: n2 = n1 + n1 r = 2000 (1+r)2 

3rd day: n3 = n2 + n2 r = 2000 (1+r)3 = 9000  ⇒ 1 + r = 3
p
4.5 = 65.1%

a, ar, ar2, ar3, ar4, . . . µg = N
p
x1 · x2 · ... · xN

Example: x = 1±0.1 ; y = 2±0.1      xweitghted = 1.5 
            x = 1±0.1 ; y = 2±0.05    xweitghted = 1.8 

                x = 1±0.1 ; y = 2±0.001  xweitghted = 1.99 
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Other means
Harmonic mean: used to characterize the mean value of a 
harmonic sequence (                                            )1

a
,

1

a+ d
,

1

a+ 2d
,

1

a+ 3d
, · · ·

µh =
NP
i 1/xi

Example: A car travels at 80 km/h for the half of the trip and 100 km/h for the 
second half. What’s his average speed?  2/(1/80+1/100) = 89 km/h 
(here you are averaging over periods of time)



Mauro Donegà - Severian Gvasaliya ETHZ                                                              VP - Data Analysis Toolbox
24

Moments summary

P =

Z +1

�1
f(x)dx

µ =

Z +1

�1
xf(x)dx

�2 =

Z +1

�1
(x� µ)2f(x)dx

�1 =

Z +1

�1

(x� µ)3

�3
f(x)dx

Kurt[X] =

Z +1

�1

(x� µ)4

�4
f(x)dx� 3

Definition Mechanics

sum / total probability total mass

mean / expectation value centre of mass 

variance moment of inertia

skewness -

kurtosis -
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Other properties: median, most 
probable

The median (or 50% quantile) of a dataset is the  
value which splits the frequency distributions into two  
sized halves

1.9. MEAN, MEDIAN AND MODE 9

8 KAPITEL 1. GRUNDLAGEN DER STATISTIK

x

1

F(x)

0

f(x)

x

xx

1 2xx

21

Abbildung 1.2: Wahrscheinlichkeitsdichte (oben) und dazugehörige Verteilungsfunktion (unten).

f(z)

10

1

z

Abbildung 1.3: Wahrscheinlichkeitsdichte einer zwischen 0 und 1 gleichverteilten Variablen.

Figure 1.8.1: A density function f(x) as well as the cumulative function F (x). Note that
f(x) = dF (x)/dx.

The median of a random variable x divides a frequency distribution into two equally
sized halves: Z

xmedian

�1
f(x0)dx0 =

Z +1

xmedian

f(x0)dx0 = 0.5. (1.9.17)

The mode corresponds to the value of x where the probability density f(x) has a max-
imum. The mode is not necessarily unique: if a distribution has two maxima, we call it
bimodal, if it has several maxima, we call it multimodal. When only one maximum is present
the mode is also called most probable value.

A sketch to illustrate the meaning of the mean, median, mode is shown in Fig. 1.10.2.

A useful rule of thumb between mode, median and mean (true for unimodal and not very
skewed distributions) is given by

Mean�Mode = 3⇥ (Mean�Median). (1.9.18)

So by knowing two out of the three, the third one can be estimated easily by this formula.

The harmonic mean H is defined by:

1

H
=

1

N

X

i

1

Xi

. (1.9.19)

The most probable value (mode) 
of a dataset is the value that 
occurs more frequently
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Cumulative and quantiles

xq = quantile of order q (or q-point),         
        with  0≤ q ≤ 1, of a distribution is  
        the value of x such that F(xq) = q  

The quantile is just the inverse of the cdf 
xq = F-1(q)

f(x)

F(x)

x

50%

80%

20%

median = F(x50 = 0) =

x50 = 0

Quantiles with a name: 
quartiles = 0%, 25%, 50%, 75%, 100% 
percentiles = 0%,1%,2%,…, 98%, 99%, 100%

50% 50%
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Error propagation (II)
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Uncertainty on the mean
This is probably the most common case you will encounter. 

Suppose you have n measurements of a single quantity x. You estimate the best value of x 
as the average of the measurements

42 CHAPTER 3. MEASUREMENTS UNCERTAINTIES

Finally with @A/@F = �@A/@B = 1/N we get:

�A =
2

N

r
FB

N

2

3.2.3 Several function of several variables

Finally we look at the most general case, in which we have a set of random variables x =
(x1, . . . , xn) with expectation values µ = (µ1, . . . , µn) belonging to the set of probability
density functions F(x) = f1, f2, . . . , fn. The covariance matrix Ukl is then given by:

Ukl = cov(fk, fl) =
X

i,j

✓
@fk

@xi

@fl

@xj

◆

x=µ

cov(xi, xj). (3.2.11)

This can be written in a shortened way as U = AV A
T where the matrix A of the derivatives

is given by

Aij =

✓
@fi

@xj

◆

x=µ

(3.2.12)

and A
T is its transpose. The matrices U = cov(fi, fj) and V = cov(xi, xj) contain the co-

variance for f and x. Both are symmetric with dimension n⇥ n.

Example Transformation to polar coordinates in 2D. Assume we have measured a point in
cartesian coordinates x and y with the uncertainties �x and �y. The measurements in x and
y shall be independent such that we can write V11 = �

2
x, V22 = �

2
y and Vi 6=j = 0. Now we

want to get the covariance matrix in polar coordinates. The transformation equations are
f1 : r2 = x

2 + y
2 and f2 : ✓ = arctan(y/x). It follows for A = @fi/@xi:

A =

 
@r

@x

@r

@y

@✓

@x

@✓

@y

!
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✓
x

r

y

r�y

r2
x

r2

◆
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And with this we can compute U = AV A
T :
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�
2
x 0
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2
y
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y
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x
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◆
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3.3 Uncertainty on the mean

Suppose we measure n times the quantity x. The measured mean value of x is x̄ =
P

i
xi/N .

As all the single measurements, also the mean will be a↵ected by statistical fluctuations. The
di↵erence between the measured mean x̄ and µ (the true-unknown value of the quantity) is

The difference between                 (the true unknown quantity) is, assuming the CLT,  
described by a gaussian distribution with variance: 
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3.3 Uncertainty on the mean

Suppose we measure n times the quantity x. The measured mean value of x is x̄ =
P

i
xi/N .

As all the single measurements, also the mean will be a↵ected by statistical fluctuations. The
di↵erence between the measured mean x̄ and µ (the true-unknown value of the quantity) is
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described by a gaussian distribution (because of the CLT) with variance V (x̄) = �
2. For

n ! 1 (if the measurement is not biased, see properties of estimators in Sec. 6.1) it will
converge to the “true” value: hx̄i = µ. The variance of x̄ is the variance of x divided by n

2:
V (x̄) = �

2
/n:

V ar(x̄) = h(x̄� µ)2i (3.3.16)

= h
 
1

n

X

i

xi � µ

!2

i (3.3.17)

=
1

n
nhx2i+ n(n� 1)

n2
hxixjii 6=j � 2µhx̄i+ µ

2 (3.3.18)

=
hx2i
n

+
n� 1

n
µ
2 � µ

2 (3.3.19)

=
hx2 � µ

2i
n

=
�
2

n
(3.3.20)

(3.3.21)

The standard deviation of the mean falls like 1/
p
n. To improve the resolution of your mea-

surement by a factor of 2 you need to get 4 times more measurements (slang: 4 times more
statistics).

Example Take a photo-detector with an energy resolution of 50 keV. If a mono-energetic
photon (coming e.g. from a certain nuclear decay) is registered, its energy is only known to
a precision of 50 keV. If 100 (mono-energetic) photons are measured (all coming from the
same nuclear decay), then the uncertainty of the mean energy is only 50/

p
100 = 5 keV. For

a resolution of 1 keV we need 2500 events. So, to double the precision, you need four times
more photons. 2

3.4 Weighted mean

Suppose we want to compute the average of a set of measurements xi with di↵erent uncer-
tainties �i. Intuitively the measurements with large uncertainties will “matter” less than
measurements with small uncertainties.

Example You have two measurements of x: 10 ± 0.1 and 8 ± 5. In this case the second
measurement will have basically no weight in your knowledge about x. 2

The correct way to obtain the mean in this case is to take into account explicitly the uncer-
tainty of the measurements:

x̄ =

P
xi/�

2
iP

1/�2
i

(3.4.22)

�
2
x̄ =

1P
1/�2

i

(3.4.23)

This is the reason why if you want to 
improve the uncertainty on your 
measurement by a factor of 2 you 
need 4 times more statistics 

The standard deviation of the mean 
falls like 1/√n
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Uncertainty on the mean

3.4. WEIGHTED MEAN 43
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Uncertainty on the weighted mean
Intuition: n measurements xi with different uncertainties σi: the measurements with large 
uncertainties will “matter” less than measurements with small uncertainties.  

3.4. WEIGHTED MEAN 43
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The correct estimation of the uncertainty is obtained from the weighted average of the 
measurements:
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(3.3.21)

The standard deviation of the mean falls like 1/
p
n. To improve the resolution of your mea-

surement by a factor of 2 you need to get 4 times more measurements (slang: 4 times more
statistics).

Example Take a photo-detector with an energy resolution of 50 keV. If a mono-energetic
photon (coming e.g. from a certain nuclear decay) is registered, its energy is only known to
a precision of 50 keV. If 100 (mono-energetic) photons are measured (all coming from the
same nuclear decay), then the uncertainty of the mean energy is only 50/

p
100 = 5 keV. For

a resolution of 1 keV we need 2500 events. So, to double the precision, you need four times
more photons. 2

3.4 Weighted mean

Suppose we want to compute the average of a set of measurements xi with di↵erent uncer-
tainties �i. Intuitively the measurements with large uncertainties will “matter” less than
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Example: compute the best estimate of the Higgs mass from: 
- ATLAS:   mH = 125.36 ± 0.41 GeV 
- CMS:      mH = 125.02 ± 0.30 GeV 

We find:  mH = 125.14 ± 0.24 GeV.
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Uncertainty on the weighted mean
Comments: 

- weighted mean collapses to the arithmetic mean when all uncertainties are equal  

- “Few measurements with small uncertainties are better than many measurements 
with large uncertainties”. Let the uncertainty of a first set of n1 measurements of 
the quantity x be σ1. The uncertainty on the mean is      
                     If we have a second set of n2 measurements with uncertainty σ2 and 
σ2 > σ1 then to get to the same precision you need to collect more data as:  
 

- must be taken with a grain of salt if the individual results and their uncertainty’s 
deviate too much from each other.  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In this case the individual results are weighted such that the values with small uncertainties
contribute more to the average.
Some comments:

• The weighted mean collapses to the arithmetic mean when fixing all the uncertainty’s
to be equal

• “Few measurements with small uncertainties are better than many measurements with
large uncertainties”. Let the uncertainty of a first set of n1 measurements of the quantity
x be �1. The uncertainty on the mean is �x̄ = �1/

p
n1. If we have a second set of n2

measurements with uncertainty �2 and �2 > �1 then to get to the same precision you

need to collect more data as: n2 = n1

⇣
�2
�1

⌘2

• Care must be taken if the individual results and their uncertainty’s deviate too much
from each other. Consider the following example: An experiment measures in one hour
100± 10 events, and another experiment measures in one hour only 1± 1 events. The
Eq. 3.4.22 would then tell us that we have 2 ± 1 events. But the (unweighted) mean
would give 50.5±5. In this case instead of blindly quote the mean or the weighted mean
you should go back and understand why you get such di↵erent outcomes (it might be
a problem of some parameters of the data taking, some faulty equipment, some trivial
mistake etc...). In case you can’t find any reason for that, it would be wise to give the
full information at hand and preset both results

Example Compute the best estimate of the Higgs mass from the ATLAS ( mH = 125.36±
0.41 GeV) [26] and CMS (mH = 125.02 ± 0.30 GeV) [27]. Applying the formula for the
weighted average we get: mH = 125.14 ± 0.24 GeV. Compare it with the o�cial LHC com-
bination. 2

3.5 A closer look at the error matrix

We have encountered in the previous sections the error matrix (also called covariance matrix).
Here we will take a closer look at it, focusing on the importance of the o↵-diagonal terms
describing the correlations.

Let’s start from the case of a 2D probability density function built from two uncorrelated
gaussian distributions in x and y. The two p.d.f.’s are:
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(for simplicity we take the two distributions to be centred at 0) and the combined 2D uncor-
related distribution is just the product of the two:
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Example: An experiment measures in one hour 100 ± 10 events, and another 
experiment measures in one hour only 1 ± 1 events. From the weighted mean we 
would have 2 ± 1 events. But the (unweighted) mean would give 50.5±5.  
Don’t blindly quote the mean or the weighted mean: go back and understand why you 
get such different outcomes (it might be a problem of some parameters of the data 
taking, some faulty equipment, some trivial mistake etc...).  

In case you can’t find any reason for that, it would be wise to give the full information 
at hand and preset both results  
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