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Learning goals of the week: 
- covariance and correlation 
- recall the basics of combinatorial calculus 
- be able to work with discrete/continuous distributions 
- recall the most common pdfs
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Multidimensional pdf’s
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More than one random variable
The output of a measurement can be more than one variable: 

Example: the direction of a particle in terms of two angles (x1, x2) =(ϑ,ϕ); 
                the four-vectors of a particle (x1, x2, x3, x4) = (pT, ϑ,ϕ, m) 

When performing the measurement we are performing a sampling of a 2D (or generally nD)  
joint pdf and the probability becomes 

1 6 CHAPTER 2 . PROBABILITY

P (A | A) = 1 renormalization
P (A2 | A1) = P (A1∩A2 | A1)

While the probability changes with the restriction,
ratios of probabilities must not:

P (A1∩A2 | A1)

P (A1 | A1)
=

P (A1∩ A2)

P (A1)

Ω

A2

A1

These requirements are met by the definition, assuming P (A1) > 0 ,

P (A2 | A1) ≡
P (A1∩ A2)

P (A1)
(2 .1 5 )

If P (A1) = 0 , P (A2 | A1) makes no sense. Nevertheless, for completeness we define
P (A2 | A1) = 0 if P (A1) = 0 .

It can be shown that the conditonal probability satisfies the axioms of proba-
bility.

It follows from the definition that

P (A1∩ A2) = P (A2 | A1) P (A1)

If P (A2 | A1) is the same for all A1, i.e., A1 and A2 are independent, then

P (A2 | A1) = P (A2)
and P (A1∩ A2) = P (A1) P (A2)

2.2.2 More than on e r.v.

Join t p.d.f.

If the outcome is more than one r.v., say X1 and X2, then the experiment is a
sampling of a joint p.d.f., f(x1, x2), such that

P (x1< X1< x1+ dx1, x2< X2< x2+ dx2) = f(x1, x2) dx1dx2 (2 .1 6 )

P (a < X1< b , c < X2< d) =
∫ b

a
dx1

∫ d

c
dx2f(x1, x2) (2 .1 7 )

Margin al p.d.f.

The marginal p.d.f. is the p.d.f. of just one of the r.v.’s; all dependence on the other
r.v.’s of the joint p.d.f. is integrated out:

f1(x1) =
∫ +∞

−∞
f(x1, x2) dx2 (2 .1 8 )

f2(x2) =
∫ +∞

−∞
f(x1, x2) dx1 (2 .1 9 )

Con dition al p.d.f.

Marginal pdf: it’s the pdf describing x1 independently of the 
value of x2; the 2D probability can be “marginalised / 
projected” by integrating over one variable:
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[~wiki]
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More than one random variable

Conditional pdf: it’s the pdf of x2 for a 
fixed value of x1: f(x2|x1)  

2.2. MORE ON PROBABILITY 17

✲

✻

X1

X2

x1

Ω
Suppose that there are two r.v.’s, X1and X2, and
a space of events Ω.

Choosing a value x1of X1restricts the possible
values of X2. Assuming f1(x1) > 0 , then f(x2 |
x1) is a p.d.f. of X2 given X1= x1.

In the discrete case, from the definition of con-
ditional probability (eq. 2 .15), we have

f(x2 | x1) ≡ P (X2= x2 | X1= x1) =
P (X2= x2∩X1= x1)

P (X1= x1)

=
P (X2= x2, X1= x1)

P (X1= x1)
=

f(x1, x2)

f1(x1)

The continuous case is, analogously,

f(x2 | x1) =
f(x1, x2)

f1(x1)
(2 .2 0 )

Note that this conditional p.d.f. is a function of only one r.v., x2, since x1 is fixed.
Of course, a different choice of x1 would give a different function. A conditional
probability is then obviously calculated

P (a < X2< b | X1= x1) =
∫ b

a
f(x2 | x1) dx2 (2 .2 1)

This may also be written P (a < X2< b | x1).
We can also compute conditional expectations:

E [u (x2) | x1] =
∫ +∞

−∞
u(x2)f(x2 | x1) dx2 (2 .2 2 )

For example, the conditional mean, E [x2 | x1],
or the conditional variance, E [(x2− E [x2 | x1])2 | x1].

The generalization to more than two variables is straightforward, e.g.,

f(x2, x4 | x1, x3) =
f(x1, x2, x3, x4)

f13(x1, x3)

where f13(x1, x3) =
∫ ∫

f(x1, x2, x3, x4) dx2dx4

2.2.3 Correlation

When an experiment results in more than one real number, i.e., when we are con-
cerned with more than one r.v. and hence the p.d.f. is of more than one dimension,
the r.v.’s may not be independent. Here are some examples:

In plain english: 
Marginal pdf ignores the values of the other variable(s) 
Conditional pdf fix the value of the other variable(s)

x1

x2
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Correlated measurements

[Metzger]

Example: 
If you spend 42 hours each week at the university, the probability that at a 
randomly chosen moment your head is at the university is 1/4. 
Similarly, the probability that your feet are at the university is 1/4. 

What is the probability that both your head and your feet are at the university ? 
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Correlated measurements

[Metzger]

Example: 
If you spend 42 hours each week at the university, the probability that at a 
randomly chosen moment your head is at the university is 1/4. 
Similarly, the probability that your feet are at the university is 1/4. 

What is the probability that both your head and your feet are at the university ? 

1/4, not 1/16 ! The location of your head and your feet are highly correlated… 



Mauro Donegà - Severian Gvasaliya ETHZ                                                              VP - Data Analysis Toolbox
7

Covariance
A way to quantify the dependence between two variables is given by the covariance

1.13. TRANSFORMATION OF VARIABLES 13

1.13 Transformation of variables

Let’s consider a 2-dimensional event space as an example (easily generalizable to the N-
dimensional case) and call the two random variables (x, y). How does the pdf f(x, y) trans-
forms under a change of variable to (X,Y )?

Consider a small interval A around a point (x, y) that we will transform to a small interval
B around the point (X,Y ) such that P (A) = P (B):

P [(X,Y ) 2 B] = P [(x, y) 2 A] =

Z

A

f(x, y)dxdy. (1.13.29)

Assume the transformation

X = ux(x, y) (1.13.30)

Y = uy(x, y) (1.13.31)

to be bijective so that the inverse exist (together with the first derivative):

x = wx(X,Y ) (1.13.32)

y = wy(X,Y ). (1.13.33)

Then

P (A) = P (B) (1.13.34)Z

A

f(x, y)dxdy =

Z

B

f(wx(X,Y ), wy(X,Y ))|J |dXdY (1.13.35)

where J is the Jacobian determinant:

J =

�����

@wx

@x

@wx

@y

@wy

@x

@wy

@y

����� (1.13.36)

So the p.d.f. in (X,Y) is the p.d.f. in (x,y) times the Jacobian:

g(X,Y ) = f(wx(X,Y ), wy(X,Y ))|J | (1.13.37)

1.14 Covariance and Correlation

Let f(x1, x2)dx1dx2 be the joint probability to observe x1 2 [x1, x1 + dx1] and x2 2 [x2, x2 +
dx2]. The two variables x1 and x2 are independent if and only if they fulfill the following
relation:

f(x1, x2) = f(x1) · f(x2). (1.14.38)

If this is the case, the two variables are said to be uncorrelated. If the above condition is
not fulfilled, then the variables are dependent and generally correlated (see the definition
of correlation below).

The covariance cov(x1, x2) between two variables is defined as

cov(x1, x2) =< (x1� < x1 >) · (x2� < x2 >) >=< x1x2 > � < x1 >< x2 > . (1.14.39)

If the two variables are independent then <x1x2> = <x1><x2> and  
the covariance is zero 
Some properties: 
- cov(x,a) = 0 
- cov(x,x) = V(x) 
- cov(x,y) = cov(y,x) 
- cov(ax, by) = ab cov(x,y) 
- cov(x+a,y+b) = cov(x,y)  
- cov(x,y) has units

Covariance matrix:  
when you have N variables the covariance is a [NxN] symmetric real matrix
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Variance with two variables

V [ax+ by] = a2V [x] + b2V [y] + 2abCov(x, y)

V

 
nX

i=1

Xi

!
=

nX

i=1

V (Xi)

The general formula for the variance of two random variables is:

which, in case of uncorrelated variables becomes simply:

Correlation

14 CHAPTER 1. PROBABILITY

If two variables are independent then < x1x2 >=< x1 >< x2 > and so the covariance is zero.
Knowing the covariance between two variables we can write the expression of the variance of
their sum:

V (x1 + x2) = V (x1) + V (x2) + 2⇥ cov(x1, x2). (1.14.40)

Some more properties of the covariance are:

• cov(x, x) = V (x)

• cov(x, y) is translation invariant (shift origin)

• cov(x, y) has units !

The correlation coe�cient between x1 and x2 is defined as:

⇢x1x2 =
cov(x1, x2)p
V (x1)V (x2)

(1.14.41)

The correlation coe�cient is the covariance normalized by the variances to get a value between
+1 and -1. Scatter plots for di↵erent correlation coe�cients ⇢ are shown in Fig. 1.14.3. If
two variables are independent, given that their covariance is zero, also ⇢x1x2 = 0. The inverse
is not necessarily true. This means that ⇢x1x2 = 0 can hold but x1 and x2 can nevertheless
be dependent, as illustrated by the following examples:

Figure 1.14.3: Some examples for correlation coe�cients ⇢. [3]. Note in particular the second
raw where the correlation coe�cient is not defined for the horizontal line because one of the
variables has null variance; and the third raw, where the correlation coe�cient is always zero.

Given a sample of size n ((x1, y1), (x2, y2), . . . , (xn, yn)), the sample covariance or empirical
covariance sxy, which is the best estimate for the (true) covariance sxy is given by:

sxy =
1

n� 1

X

i

(xi � x̄)(yi � ȳ). (1.14.42)

NB: contrary to the covariance, the correlation coefficient is dimensionless

The correlation coefficient (linear correlation) is obtained normalizing the covariance  
by the standard deviation of the two variables

Correlation matrix:  
when you have N variables the covariance is a [NxN] symmetric real matrix with “1” 
on the diagonal
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Sample covariance and correlation
Given a sample of size n: (x1,y1)… (xn,yn), the sample covariance or empirical covariance  
estimate of the covariance is

14 CHAPTER 1. PROBABILITY
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Given a sample of size n ((x1, y1), (x2, y2), . . . , (xn, yn)), the sample covariance or empirical
covariance sxy, which is the best estimate for the (true) covariance sxy is given by:

sxy =
1

n� 1

X

i

(xi � x̄)(yi � ȳ). (1.14.42)

1.14. COVARIANCE AND CORRELATION 15

and the empirical correlation rxy or the so-called Pearson-correlation-coe�cient gives the best
estimate for the (true) correlation coe�cient ⇢xy:

rxy =
sxy

sxsy
. (1.14.43)

Here, the standard deviations (already familiar from Eq. 1.12.24) are labeled with sx and sy,
respectively.

Figure 1.14.4: Correlation does not imply causation! “Chocolate consumption, cognitive
function, and Nobel laureates.”N. Engl. J. Med. 2012 Oct 18; 367(16):1562-4.

Figure 1.14.5: Correlation does not imply causation! Data form the U.S. Department of
Agriculture.

and the sample correlation or empirical correlation estimate of  
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and the empirical correlation rxy or the so-called Pearson-correlation-coe�cient gives the best
estimate for the (true) correlation coe�cient ⇢xy:

rxy =
sxy
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. (1.14.43)

Here, the standard deviations (already familiar from Eq. 1.12.24) are labeled with sx and sy,
respectively.

Figure 1.14.4: Correlation does not imply causation! “Chocolate consumption, cognitive
function, and Nobel laureates.”N. Engl. J. Med. 2012 Oct 18; 367(16):1562-4.

Figure 1.14.5: Correlation does not imply causation! Data form the U.S. Department of
Agriculture.

The (linear) correlation coefficient tells how well a set of measurement of two variables  
supports the hypothesis that the two are linearly dependent.

Exercise: Which one has the largest correlation ? positive / negative ?

(scatter plot)
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Sample covariance and correlation
Given a sample of size n (x1,y1)… (xn,yn) the sample covariance or empirical covariance  
estimate of the covariance is
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If two variables are independent then < x1x2 >=< x1 >< x2 > and so the covariance is zero.
Knowing the covariance between two variables we can write the expression of the variance of
their sum:
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• cov(x, y) has units !
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⇢x1x2 =
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(1.14.41)

The correlation coe�cient is the covariance normalized by the variances to get a value between
+1 and -1. Scatter plots for di↵erent correlation coe�cients ⇢ are shown in Fig. 1.14.3. If
two variables are independent, given that their covariance is zero, also ⇢x1x2 = 0. The inverse
is not necessarily true. This means that ⇢x1x2 = 0 can hold but x1 and x2 can nevertheless
be dependent, as illustrated by the following examples:

Figure 1.14.3: Some examples for correlation coe�cients ⇢. [3]. Note in particular the second
raw where the correlation coe�cient is not defined for the horizontal line because one of the
variables has null variance; and the third raw, where the correlation coe�cient is always zero.

Given a sample of size n ((x1, y1), (x2, y2), . . . , (xn, yn)), the sample covariance or empirical
covariance sxy, which is the best estimate for the (true) covariance sxy is given by:

sxy =
1

n� 1

X

i

(xi � x̄)(yi � ȳ). (1.14.42)
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Sample covariance and correlation
Given a sample of size n (x1,y1)… (xn,yn) the sample covariance or empirical covariance  
estimate of the covariance is

14 CHAPTER 1. PROBABILITY

If two variables are independent then < x1x2 >=< x1 >< x2 > and so the covariance is zero.
Knowing the covariance between two variables we can write the expression of the variance of
their sum:

V (x1 + x2) = V (x1) + V (x2) + 2⇥ cov(x1, x2). (1.14.40)

Some more properties of the covariance are:

• cov(x, x) = V (x)

• cov(x, y) is translation invariant (shift origin)

• cov(x, y) has units !

The correlation coe�cient between x1 and x2 is defined as:

⇢x1x2 =
cov(x1, x2)p
V (x1)V (x2)

(1.14.41)

The correlation coe�cient is the covariance normalized by the variances to get a value between
+1 and -1. Scatter plots for di↵erent correlation coe�cients ⇢ are shown in Fig. 1.14.3. If
two variables are independent, given that their covariance is zero, also ⇢x1x2 = 0. The inverse
is not necessarily true. This means that ⇢x1x2 = 0 can hold but x1 and x2 can nevertheless
be dependent, as illustrated by the following examples:

Figure 1.14.3: Some examples for correlation coe�cients ⇢. [3]. Note in particular the second
raw where the correlation coe�cient is not defined for the horizontal line because one of the
variables has null variance; and the third raw, where the correlation coe�cient is always zero.

Given a sample of size n ((x1, y1), (x2, y2), . . . , (xn, yn)), the sample covariance or empirical
covariance sxy, which is the best estimate for the (true) covariance sxy is given by:

sxy =
1

n� 1

X

i

(xi � x̄)(yi � ȳ). (1.14.42)
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Knowing the covariance between two variables we can write the expression of the variance of
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• cov(x, y) is translation invariant (shift origin)

• cov(x, y) has units !

The correlation coe�cient between x1 and x2 is defined as:

⇢x1x2 =
cov(x1, x2)p
V (x1)V (x2)

(1.14.41)

The correlation coe�cient is the covariance normalized by the variances to get a value between
+1 and -1. Scatter plots for di↵erent correlation coe�cients ⇢ are shown in Fig. 1.14.3. If
two variables are independent, given that their covariance is zero, also ⇢x1x2 = 0. The inverse
is not necessarily true. This means that ⇢x1x2 = 0 can hold but x1 and x2 can nevertheless
be dependent, as illustrated by the following examples:

Figure 1.14.3: Some examples for correlation coe�cients ⇢. [3]. Note in particular the second
raw where the correlation coe�cient is not defined for the horizontal line because one of the
variables has null variance; and the third raw, where the correlation coe�cient is always zero.

Given a sample of size n ((x1, y1), (x2, y2), . . . , (xn, yn)), the sample covariance or empirical
covariance sxy, which is the best estimate for the (true) covariance sxy is given by:

sxy =
1

n� 1

X

i

(xi � x̄)(yi � ȳ). (1.14.42)

1.14. COVARIANCE AND CORRELATION 15

and the empirical correlation rxy or the so-called Pearson-correlation-coe�cient gives the best
estimate for the (true) correlation coe�cient ⇢xy:

rxy =
sxy

sxsy
. (1.14.43)

Here, the standard deviations (already familiar from Eq. 1.12.24) are labeled with sx and sy,
respectively.

Figure 1.14.4: Correlation does not imply causation! “Chocolate consumption, cognitive
function, and Nobel laureates.”N. Engl. J. Med. 2012 Oct 18; 367(16):1562-4.

Figure 1.14.5: Correlation does not imply causation! Data form the U.S. Department of
Agriculture.
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(scatter plot)

The (linear) correlation coefficient tells how well a set of measurement of two variables  
supports the hypothesis that the two are linearly dependent.

Exercise: Which one has the largest correlation ? positive / negative ?



Mauro Donegà - Severian Gvasaliya ETHZ                                                              VP - Data Analysis Toolbox
12

Sample covariance and correlation
Given a sample of size n (x1,y1)… (xn,yn) the sample covariance or empirical covariance  
estimate of the covariance is

14 CHAPTER 1. PROBABILITY
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The (linear) correlation coefficient tells how well a set of measurement of two variables  
supports the hypothesis that the two are linearly dependent.

undefined (0/0) but not 
very interesting, as y is 
a constant for each 
value of x

Exercise: Which one has the largest correlation ? positive / negative ?
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Sample covariance and correlation

14 CHAPTER 1. PROBABILITY

If two variables are independent then < x1x2 >=< x1 >< x2 > and so the covariance is zero.
Knowing the covariance between two variables we can write the expression of the variance of
their sum:

V (x1 + x2) = V (x1) + V (x2) + 2⇥ cov(x1, x2). (1.14.40)

Some more properties of the covariance are:

• cov(x, x) = V (x)

• cov(x, y) is translation invariant (shift origin)

• cov(x, y) has units !

The correlation coe�cient between x1 and x2 is defined as:

⇢x1x2 =
cov(x1, x2)p
V (x1)V (x2)

(1.14.41)

The correlation coe�cient is the covariance normalized by the variances to get a value between
+1 and -1. Scatter plots for di↵erent correlation coe�cients ⇢ are shown in Fig. 1.14.3. If
two variables are independent, given that their covariance is zero, also ⇢x1x2 = 0. The inverse
is not necessarily true. This means that ⇢x1x2 = 0 can hold but x1 and x2 can nevertheless
be dependent, as illustrated by the following examples:

Figure 1.14.3: Some examples for correlation coe�cients ⇢. [3]. Note in particular the second
raw where the correlation coe�cient is not defined for the horizontal line because one of the
variables has null variance; and the third raw, where the correlation coe�cient is always zero.

Given a sample of size n ((x1, y1), (x2, y2), . . . , (xn, yn)), the sample covariance or empirical
covariance sxy, which is the best estimate for the (true) covariance sxy is given by:

sxy =
1

n� 1

X

i

(xi � x̄)(yi � ȳ). (1.14.42)

The linear correlation coefficient for all these samples is zero, but it doesn’t mean that  
the two variables are independent !

Exercise: Which one has the largest correlation ? positive / negative ?
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Error propagation (x,y)
Suppose you have two variables: x and y. 
The uncertainty on a function of the two variables can be computed again from the  
Taylor expansion:

40 CHAPTER 3. MEASUREMENTS UNCERTAINTIES

z = f(x, y) Uncertainty

z = x± y �z =
q
�2
x + �2

y

z = x · k �z = k · �x

z = x · y �z

z
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+
⇣
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z
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Table 3.2.1: Some examples of error propagation for two uncorrelated variables. You can
read the product/quotient formula as: the percentage of fraction error adds in quadrature
(i.e. if x ± 3%, y ± 4% then the uncertainty on x · y and x/y is ±5%); same is true for the
reciprocal, the percentage error on a quantity and its reciprocal are the same.

Using V (f) =< f
2
> � < f >

2 yields

V (f) = �
2
f
⇡

✓
df

dx

◆2

�
2
x. (3.2.2)

This approximation is only true if the uncertainties are small, i.e. the first derivative must
not vary too much within the neighborhood of a few �. The derivative should be estimated
at the true value of x and when that is unknown its measured value is used.

3.2.2 Function of several variables

In the case of a function f(x, y) of two variables x and y, we repeat the Taylor expansion to
the first order:

f(x, y) ⇡ f(x0, y0) +

✓
@f

@x

◆

x0,y0

· (x� x0) +

✓
@f

@y

◆

x0,y0

· (y � y0) (3.2.3)

Again we assume that the uncertainties are small, which allows us to drop the higher-order
terms of the Taylor expansion. We thus get the result:
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(3.2.6)

where cov(x, y) = h(x� < x >) · (y� < y >)i is the covariance, defined as:

Vij = cov(xi, xj) =

✓
�
2
x cov(x, y)

cov(x, y) �
2
y

◆
=

✓
�
2
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⇢�x�y �
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◆
(3.2.7)
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Function of several variables 41

where ⇢ is the correlation coe�cient defined in Eq. 1.14.41. The covariance matrix is a
symmetric n⇥n matrix, which can be generalized for a function f of n variables x1, x2, . . . xn
as:

�
2
f
=

X

j

✓
@f

@xj

◆2

· �2
xj

+
X

j

X

k 6=j

✓
@f
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◆
· cov(xj , xk) (3.2.8)

For continuous variables the diagonal elements Vij are the variances

�
2
xi

=

Z
(xi� < xi >)2f(x1, . . . xn)dx1 . . . dxn (3.2.9)

and they are always positive. The o↵-diagonal elements can be positive or negative, and they
represent the covariances:

Vij =

Z
(xi� < xi >)(xj� < xj >)f(x1, . . . xn)dx1 . . . dxn. (3.2.10)

Example Let A = F�B

F+B
be the measured forward/backward-asymmetry of an angular distri-

bution, where F (B) is the forward (backward) hemisphere of a detector. Be N = F +B the
total number of measured events. If the uncertainties �F and �B for F and B are uncorrelated
(this is the case if N is not fixed), we have

�A =
2FB

N2

r⇣
�F

F

⌘2
+
⇣
�B

B

⌘2
.

In the case of Poisson distributed events (�2
F
= F and �

2
B
= B) we have:
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2FB

N2
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F
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1

B
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1�A

2

2

s✓
1

F
+

1

B

◆

From that we can distinguish two limiting cases:

• F ⇠ B ⇠ N/2 and the asymmetry A ⇠ 0:
Thus the uncertainty is �A ⇠ �N

N
.

• F � B and hence A ⇠ +1:
�A ⇠ 2�B

N
, i.e. the uncertainty is dominated by the uncertainty of the smaller number

of events.

Alternatively we can also fix the total number of events N and consider the events F and
B as binomially distributed: let p is the probability that a particle is registered in the for-
ward hemisphere of the detector. From this it follows that: �2

F
= �

2
B
= Np(1� p) ⇠ FB/N .

Because F and B are fully anti-correlated (which means that cov(F,B) = ��F 2), it follows
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2
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◆
.

Which can be extended to several variables as
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Correlation is not causation
When looking at data, don’t fool yourself ! 

“The first principle is that you must not fool yourself and 
you are the easiest person to fool.”  

R.P.Feynman

1.14. COVARIANCE AND CORRELATION 15

and the empirical correlation rxy or the so-called Pearson-correlation-coe�cient gives the best
estimate for the (true) correlation coe�cient ⇢xy:

rxy =
sxy

sxsy
. (1.14.43)

Here, the standard deviations (already familiar from Eq. 1.12.24) are labeled with sx and sy,
respectively.

Figure 1.14.4: Correlation does not imply causation! “Chocolate consumption, cognitive
function, and Nobel laureates.”N. Engl. J. Med. 2012 Oct 18; 367(16):1562-4.

Figure 1.14.5: Correlation does not imply causation! Data form the U.S. Department of
Agriculture.
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rxy =
sxy
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. (1.14.43)

Here, the standard deviations (already familiar from Eq. 1.12.24) are labeled with sx and sy,
respectively.

Figure 1.14.4: Correlation does not imply causation! “Chocolate consumption, cognitive
function, and Nobel laureates.”N. Engl. J. Med. 2012 Oct 18; 367(16):1562-4.

Figure 1.14.5: Correlation does not imply causation! Data form the U.S. Department of
Agriculture. [https://ourworldindata.org/]

https://ourworldindata.org/
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Combinatorial calculus



Mauro Donegà - Severian Gvasaliya ETHZ                                                              VP - Data Analysis Toolbox
17

Combinatorial calculus

Rio 2016 - 100m : Bolt, Gatlin, DeGrasse

When talking about sequences of objects we call: 
permutations if we care about the order 
combinations if we don’t care about the order

These are all different permutations but equivalent combinations
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Permutations with repetition
Pick r times from a set of n objects and put them back  
each time. 
The number of possible permutations is —> 
You always have all n objects to choose from

Chapter 2

Probability Distributions

In this chapter we will describe the most common discrete and continuous probability distri-
bution functions encountered in high energy physics.

2.1 Discrete Distributions

2.1.1 Combinatorial

Given the importance of combinatorial calculus for what follows, we summarize in this section
a few of the main results.

Typically we will be talking about sequences of objects: a distinction has to be made on
whether we care or not about the order of the element in a sequence. If we care about the
order we talk about permutations, otherwise we talk about combinations (permutations
are ordered combinations).

Example: take the set of letters {abc}. The sequences {cab} and {bac} are considered equiv-
alent combinations but distinct permutations. 2

Permutations with repetitions: pick r objects from a set of n and put them back each
time. The number of permutations (ordered sequences) is:

n
r (2.1.1)

Example: A byte is a sequence of 8 bits (0/1): the number of permutations with repetitions
is 28 = 256. A lock with three digits (form 0 to 9) has 103 permutations. 2

Permutations without repetitions: pick r objects from a set of n and don’t put them back.
At each pick you’ll have less objects to choose from, so the number number of permutations
is reduced with respect to the permutations with repetitions. The number of permutations
(ordered sequences) is:

n!

(n� r)!
(2.1.2)

17

Example:  
2 bit pick 4 times

Example:  
lock with 3 digits 0..9

24= 16 permutations 103 = 1000 permutations

Example:  
Mastermind: 6 colored pegs,  
4 holes 

64= 1296 permutations
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Permutations without repetition
Pick r times from a set of n objects and don’t put them back. 
The number of possible permutations is —> 
Every time you pick one you have one less to choose from.

Chapter 2

Probability Distributions

In this chapter we will describe the most common discrete and continuous probability distri-
bution functions encountered in high energy physics.

2.1 Discrete Distributions

2.1.1 Combinatorial

Given the importance of combinatorial calculus for what follows, we summarize in this section
a few of the main results.

Typically we will be talking about sequences of objects: a distinction has to be made on
whether we care or not about the order of the element in a sequence. If we care about the
order we talk about permutations, otherwise we talk about combinations (permutations
are ordered combinations).

Example: take the set of letters {abc}. The sequences {cab} and {bac} are considered equiv-
alent combinations but distinct permutations. 2

Permutations with repetitions: pick r objects from a set of n and put them back each
time. The number of permutations (ordered sequences) is:

n
r (2.1.1)

Example: A byte is a sequence of 8 bits (0/1): the number of permutations with repetitions
is 28 = 256. A lock with three digits (form 0 to 9) has 103 permutations. 2

Permutations without repetitions: pick r objects from a set of n and don’t put them back.
At each pick you’ll have less objects to choose from, so the number number of permutations
is reduced with respect to the permutations with repetitions. The number of permutations
(ordered sequences) is:

n!

(n� r)!
(2.1.2)

17Example: 4 picks in a deck of 52 cards 
        first pick choose from 52, second from 51, third from 50, fourth from 49 
         52∙ 51∙ 50∙ 49 = 52! / (52-4)!
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Permutations without repetition
Example: 3 athletes, 3 podium positions  = 3! = 6 permutations 
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Combinations without repetition
Pick r times from a set of n objects and don’t put them back, 
ignoring the order 
The number of possible combinations is —> 
Every time you pick one you have one less to choose from, 
and you need to divide by the number of ordered sequences r!

18 CHAPTER 2. PROBABILITY DISTRIBUTIONS

Example: take all permutations without repetitions of the 52 cards in the deck: 52! (first
pick you choose among 52 cards, second pick among 51 etc...). Take all permutations of the
first 4 picks in a deck of 52 cards: 52 · 51 · 50 · 49 = 52!/(52� 4)! (first you pick from 52, then
from 51, then from 50, then form 49). 2

Combinations without repetitions:
pick r objects from a set of n and don’t put them back. At each pick you’ll have less objects
to choose from as for permutations, but this time all sequences that di↵er only by their order
are considered to be the same. The number of combinations (non-ordered sequences) is the
number of permutations corrected by the the factor that describes the number of ordered
sequences (i.e. r!):

n!

(n� r)!

1

r!
=

✓
n

r

◆
(2.1.3)

These numbers are the so-called binomial coe�cients, which appear in the binomial theorem:

(p+ q)n =
nX

r=0

✓
n

r

◆
p
r · qn�r (2.1.4)

It follows that the number of combinations extracting r objects from n or (n-r) from n is the
same !

Example: “lotto” (six-numbers lottery game): 6 numbers are extracted (without putting
them back) from a set of 90. The order of the extraction is irrelevant. The probability to
win (when all tickets are sold) is 1/

�
n

r

�
(which is o(10�7)). 2

Combinations with repetitions:
pick r objects from a set of n and put them back. As in the case of permutations with
repetition but this time without considering the order.

(n+ r � 1)!

(n� r)!r!
=

✓
n+ r � 1

r

◆
(2.1.5)

Example: take r-scoops from n-icecream flavours. You can take them all the same or repeat
them as you like. 2

Factorial
For large n, the Stirling formula can be used to approximate n!:

n! ⇡
⇣
n

e

⌘
np

2⇡n (2.1.6)

lnn! ⇡ (n+ 1/2) lnn� n+ ln

p
2⇡ (2.1.7)

The first term in the second line, (n/e)n, is called the zero-th approximation, whereas the
whole term in the above equation is the first approximation. The factorial n! can be extended
for non-integer arguments x by the gamma function �(x):

Example: Lotto: 6 numbers extracted without putting them back from the set 1..90,  
                the order is irrelevant. 

The chances to win are                ~ 10-9
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Example: take all permutations without repetitions of the 52 cards in the deck: 52! (first
pick you choose among 52 cards, second pick among 51 etc...). Take all permutations of the
first 4 picks in a deck of 52 cards: 52 · 51 · 50 · 49 = 52!/(52� 4)! (first you pick from 52, then
from 51, then from 50, then form 49). 2

Combinations without repetitions:
pick r objects from a set of n and don’t put them back. At each pick you’ll have less objects
to choose from as for permutations, but this time all sequences that di↵er only by their order
are considered to be the same. The number of combinations (non-ordered sequences) is the
number of permutations corrected by the the factor that describes the number of ordered
sequences (i.e. r!):

n!

(n� r)!

1

r!
=

✓
n

r

◆
(2.1.3)

These numbers are the so-called binomial coe�cients, which appear in the binomial theorem:

(p+ q)n =
nX

r=0

✓
n

r

◆
p
r · qn�r (2.1.4)

It follows that the number of combinations extracting r objects from n or (n-r) from n is the
same !

Example: “lotto” (six-numbers lottery game): 6 numbers are extracted (without putting
them back) from a set of 90. The order of the extraction is irrelevant. The probability to
win (when all tickets are sold) is 1/

�
n

r

�
(which is o(10�7)). 2

Combinations with repetitions:
pick r objects from a set of n and put them back. As in the case of permutations with
repetition but this time without considering the order.

(n+ r � 1)!

(n� r)!r!
=

✓
n+ r � 1

r

◆
(2.1.5)

Example: take r-scoops from n-icecream flavours. You can take them all the same or repeat
them as you like. 2

Factorial
For large n, the Stirling formula can be used to approximate n!:

n! ⇡
⇣
n

e

⌘
np

2⇡n (2.1.6)

lnn! ⇡ (n+ 1/2) lnn� n+ ln

p
2⇡ (2.1.7)

The first term in the second line, (n/e)n, is called the zero-th approximation, whereas the
whole term in the above equation is the first approximation. The factorial n! can be extended
for non-integer arguments x by the gamma function �(x):

(read “n pick r”)
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Combinations with repetition
Pick r times from a set of n objects and put them back,  
ignoring the order 
The number of possible combinations is —> 

Example: take n scoops of icecream. You can repeat them and the order is not important

(n+ r � 1)!

(n� 1)!r!
=

✓
n+ r � 1

r

◆



Mauro Donegà - Severian Gvasaliya ETHZ                                                              VP - Data Analysis Toolbox
23

Combinations with repetition
Pick r times from a set of n objects and put them back ignoring the order. 

Derivation: 
start from an example: take 3 objects from a set of 5 (a,b,c,d,e) 
e.g. a a b,    a b c,    c c c 

Think about the sequences of objects as classes and put a separator in between them 
aab —> a a | b |  |  |     (the last three are empty classes corresponding to c, d, e) 
abc —> a | b | c |  |  
ccc —>   |  | c c c |  |  
  
We can also drop the letters and replace all symbols with “x” 
e.g.: aab —> a a | b |  |  |  —> x x | x |  |  |   

The problem is now how many ways we can place r = 3 “x” and n = 5-1 = 4 “|” 

This is the same as the combination w/o repetition “ N pick R ”, where in this case  
N = n-1 + r (sum of all “|” and “x”) 
R = r ✓

n� 1 + r

r

◆
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Discrete pdfs
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Bernoulli trials
A Bernoulli trial is an experiment with only two outcomes: 0 / 1, pass / fail, yes / no 
and the success probability p (and failure probability q =1-p) is constant 

The random variable is discrete and can take only the values r ∈{0,1} 
The pdf is trivially the probability for an experiment to succeed or fail

Bernoulli trials 19

x! =

Z 1

0
u
x
e
�u

du = �(x+ 1) (2.1.8)

�(x+ 1) = x�(x) (2.1.9)

2.1.2 Bernoulli trials

A Bernoulli trial is an experiment with only two outcomes (success/failure or 1/0) and where
success will occur with constant probability p and failure with constant probability q = 1�p.
Examples are again the coin toss, or the decay of K+ into either µ+

⌫ or any other channels.
The random variable r 2 {0, 1} is the outcome of the experiment and its p.d.f. (see Fig. 2.1.1
is:

f(r; p) = p
r
q
(1�r) (2.1.10)

The p.d.f. is simply the probability for a single experiment to give success/failure. The first
two central moments of the distribution are:

µ = p (2.1.11)

V (r) = p(1� p) (2.1.12)

Figure 2.1.1: Bernoulli trials distribution for a fixed p = 0.3 and 1000 trials.

2.1.3 Binomial

Given n Bernoulli trials with a probability of success p, the binomial distribution gives the
probability to observe r successes and, consequently, n�r failures independently of the order

The first two moments are:
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Z 1

0
u
x
e
�u

du = �(x+ 1) (2.1.8)

�(x+ 1) = x�(x) (2.1.9)

2.1.2 Bernoulli trials

A Bernoulli trial is an experiment with only two outcomes (success/failure or 1/0) and where
success will occur with constant probability p and failure with constant probability q = 1�p.
Examples are again the coin toss, or the decay of K+ into either µ+

⌫ or any other channels.
The random variable r 2 {0, 1} is the outcome of the experiment and its p.d.f. (see Fig. 2.1.1
is:

f(r; p) = p
r
q
(1�r) (2.1.10)

The p.d.f. is simply the probability for a single experiment to give success/failure. The first
two central moments of the distribution are:

µ = p (2.1.11)

V (r) = p(1� p) (2.1.12)

Figure 2.1.1: Bernoulli trials distribution for a fixed p = 0.3 and 1000 trials.

2.1.3 Binomial

Given n Bernoulli trials with a probability of success p, the binomial distribution gives the
probability to observe r successes and, consequently, n�r failures independently of the order

Example: p =0.3 
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Binomial distribution
Given n Bernoulli trials with success probability p, the binomial distribution gives the 
probability to observe r successes and n-r failures (independently of the order). 

The random variable is r ∈{0,n}, the probability for r successes (for Bernoulli trials n = 1)

20 CHAPTER 2. PROBABILITY DISTRIBUTIONS

with which they appear. The random variable is again r but this time r 2 {0, n}, i.e. the
maximum is given when all trials give a success. The p.d.f. is:

P (r;n, p) =

✓
n

r

◆
p
r(1� p)n�r

. (2.1.13)

Eq. 2.1.13 can be motivated in the following way: the probability that we get a positive
outcome in the first r attempts and negative outcome in the last n � r attempts, is given
by p

r · (1 � p)n�r; but this sequential arrangement is only one of a total of
�
n

r

�
possible

arrangements. The distribution for di↵erent values of the parameters is plotted in Fig. 2.1.2.
The important properties of the binomial distribution are:

• It is normalized to 1, i.e.
P

n

r=0 P (r) = 1.

• The mean of r is < r >=
P

n

r=0 r · P (r) = np.

• The variance of r is V (r) = np(1� p).

The binomial distribution (like several others we will encounter) has the reproductive
property. If X is binomially distributed as P (X;n, p) and Y is binomially distributed
(with the same probability p) as P (Y ;m, p), then the sum is binomially distributed as
P (X + Y ;n+m, p).

Example: what is the probability to get out of 10 coin tosses 3 times a “head”? Solution:
P (3; 10, 0.5) =

�10
3

�
0.53 · (1� 0.5)10�3 = 10!

3!7!0.5
3 · 0.57 = 0.12 2

Example: a detector with 4 layers has an e�ciency per layer to detect a traversing par-
ticle of 88%. To reconstruct the complete track of the particle, we need at least three hits
(i.e. three out of the four layers have to detect the particle). What is the probability to
reconstruct the track?
We need at least 3 hits (i.e. 3 or 4), so we have to sum the probability to have 3 hits to the
probability to have 4 hits:
P (r � 3;n = 4, p = 0.88) = P (r = 3;n = 4, p = 0.88) + P (r = 4;n = 4, p = 0.88) =
0.357 + 0.579 = 0.936

What if we have 3 or 5 layers?
For 3 layers = P (r = 3;n = 3, p = 0.88) = 0.683
For 5 layers = P (r � 3;n = 5, p = 0.88) = 0.103 + 0.362 + 0.522 = 0.987

How big should be the e�ciency be for 3, 4 or 5 layers to have an overall probability for
track reconstruction greater than 99%?
Given r � 3, n = 3, 4, 5 and P � 0.99 we need to get p. This can be done calculating
P (r � 3;n, p) for the various values of n solving for p. For n = 3 we find p = 0.996; n = 4
! p = 0.940; n = 5 ! p = 0.863. 2

2.1.4 Multinomial Distribution

The precedent considerations can directly be generalized for the multidimensional problem.
Assume we have n objects of k di↵erent types, and ri is the number of objects of type i. The

The first two moments are:

20 CHAPTER 2. PROBABILITY DISTRIBUTIONS

with which they appear. The random variable is again r but this time r 2 {0, n}, i.e. the
maximum is given when all trials give a success. The p.d.f. is:

P (r;n, p) =

✓
n

r

◆
p
r(1� p)n�r

. (2.1.13)

Eq. 2.1.13 can be motivated in the following way: the probability that we get a positive
outcome in the first r attempts and negative outcome in the last n � r attempts, is given
by p

r · (1 � p)n�r; but this sequential arrangement is only one of a total of
�
n

r

�
possible

arrangements. The distribution for di↵erent values of the parameters is plotted in Fig. 2.1.2.
The important properties of the binomial distribution are:

• It is normalized to 1, i.e.
P

n

r=0 P (r) = 1.

• The mean of r is < r >=
P

n

r=0 r · P (r) = np.

• The variance of r is V (r) = np(1� p).

The binomial distribution (like several others we will encounter) has the reproductive
property. If X is binomially distributed as P (X;n, p) and Y is binomially distributed
(with the same probability p) as P (Y ;m, p), then the sum is binomially distributed as
P (X + Y ;n+m, p).

Example: what is the probability to get out of 10 coin tosses 3 times a “head”? Solution:
P (3; 10, 0.5) =

�10
3

�
0.53 · (1� 0.5)10�3 = 10!

3!7!0.5
3 · 0.57 = 0.12 2

Example: a detector with 4 layers has an e�ciency per layer to detect a traversing par-
ticle of 88%. To reconstruct the complete track of the particle, we need at least three hits
(i.e. three out of the four layers have to detect the particle). What is the probability to
reconstruct the track?
We need at least 3 hits (i.e. 3 or 4), so we have to sum the probability to have 3 hits to the
probability to have 4 hits:
P (r � 3;n = 4, p = 0.88) = P (r = 3;n = 4, p = 0.88) + P (r = 4;n = 4, p = 0.88) =
0.357 + 0.579 = 0.936

What if we have 3 or 5 layers?
For 3 layers = P (r = 3;n = 3, p = 0.88) = 0.683
For 5 layers = P (r � 3;n = 5, p = 0.88) = 0.103 + 0.362 + 0.522 = 0.987

How big should be the e�ciency be for 3, 4 or 5 layers to have an overall probability for
track reconstruction greater than 99%?
Given r � 3, n = 3, 4, 5 and P � 0.99 we need to get p. This can be done calculating
P (r � 3;n, p) for the various values of n solving for p. For n = 3 we find p = 0.996; n = 4
! p = 0.940; n = 5 ! p = 0.863. 2

2.1.4 Multinomial Distribution

The precedent considerations can directly be generalized for the multidimensional problem.
Assume we have n objects of k di↵erent types, and ri is the number of objects of type i. The

20 CHAPTER 2. PROBABILITY DISTRIBUTIONS

with which they appear. The random variable is again r but this time r 2 {0, n}, i.e. the
maximum is given when all trials give a success. The p.d.f. is:

P (r;n, p) =

✓
n

r

◆
p
r(1� p)n�r

. (2.1.13)

Eq. 2.1.13 can be motivated in the following way: the probability that we get a positive
outcome in the first r attempts and negative outcome in the last n � r attempts, is given
by p

r · (1 � p)n�r; but this sequential arrangement is only one of a total of
�
n

r

�
possible

arrangements. The distribution for di↵erent values of the parameters is plotted in Fig. 2.1.2.
The important properties of the binomial distribution are:

• It is normalized to 1, i.e.
P

n

r=0 P (r) = 1.

• The mean of r is < r >=
P

n

r=0 r · P (r) = np.

• The variance of r is V (r) = np(1� p).

The binomial distribution (like several others we will encounter) has the reproductive
property. If X is binomially distributed as P (X;n, p) and Y is binomially distributed
(with the same probability p) as P (Y ;m, p), then the sum is binomially distributed as
P (X + Y ;n+m, p).

Example: what is the probability to get out of 10 coin tosses 3 times a “head”? Solution:
P (3; 10, 0.5) =

�10
3

�
0.53 · (1� 0.5)10�3 = 10!

3!7!0.5
3 · 0.57 = 0.12 2

Example: a detector with 4 layers has an e�ciency per layer to detect a traversing par-
ticle of 88%. To reconstruct the complete track of the particle, we need at least three hits
(i.e. three out of the four layers have to detect the particle). What is the probability to
reconstruct the track?
We need at least 3 hits (i.e. 3 or 4), so we have to sum the probability to have 3 hits to the
probability to have 4 hits:
P (r � 3;n = 4, p = 0.88) = P (r = 3;n = 4, p = 0.88) + P (r = 4;n = 4, p = 0.88) =
0.357 + 0.579 = 0.936

What if we have 3 or 5 layers?
For 3 layers = P (r = 3;n = 3, p = 0.88) = 0.683
For 5 layers = P (r � 3;n = 5, p = 0.88) = 0.103 + 0.362 + 0.522 = 0.987

How big should be the e�ciency be for 3, 4 or 5 layers to have an overall probability for
track reconstruction greater than 99%?
Given r � 3, n = 3, 4, 5 and P � 0.99 we need to get p. This can be done calculating
P (r � 3;n, p) for the various values of n solving for p. For n = 3 we find p = 0.996; n = 4
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2.1.4 Multinomial Distribution

The precedent considerations can directly be generalized for the multidimensional problem.
Assume we have n objects of k di↵erent types, and ri is the number of objects of type i. The

Reproductive property: if X is binomially distributed as P(X;n,p) and Y is binomially 
distributed as P(Y; m,p) then X+Y is binomially distributed as P(X+Y; n+m, p). 
NB: p is the same for X and Y
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Binomial distribution
Example: a pixel detector has four layers and an efficiency per layer to detect 
a charged particle of 99%. What is the probability to reconstruct a track with 2 or 
3 or 4 hits ? and what is the probability to reconstruct a track with at least 3 hits ?

P(r = 2; n = 4, p=0.99) = 0.00 (0.0006) 
P(r = 3; n = 4, p=0.99) = 0.038 
P(r = 4; n = 4, p=0.99) = 0.96 

P(r ≥ 2; n = 4, p=0.88) = sum of the above > 99%

z

r

r-φ
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Multinomial distribution
We can generalize the binomial distribution by considering k-types of outcomes 
instead of only 0 / 1. (Think about a measurement giving you the k-th bin in an 
histogram). Assume we have ri measurements of type i with i∈{0,k} (number of entries 
in bin i) with the total number of measurements n = r1+r2+…+rk and probability pi for 
each type of outcome (probability to enter in bin i). 
The multinomial pdf is :

The first two moments are:

Poisson Distribution 21

Figure 2.1.2: The binomial distribution for a fixed p = 0.4 and di↵erent values for n.

number of distinguishable arrangements is then given by n!
r1!r2!···rk! . If we now choose randomly

r objects (putting them back every time), then the probability of getting an arrangement of
ri objects of type i is given by p

r1
1 · pr22 · · · prk

k
. The overall probability is therefore simply

the probability of our arrangement, multiplied with the number of possible distinguishable
arrangements:

P (r1, .., rk;N, p1, pk) =

✓
r!

r1!r2!r3! · · · rk!

◆
p
r1
1 · pr22 · · · prk

k
. (2.1.14)

This distribution is called the multinomial distribution and it is what describes the probability
to have ri events in bin i of an histogram with n entries. The corresponding properties are:

< ri >= npi and V (ri) = npi(1� pi). (2.1.15)

2.1.5 Poisson Distribution

The Poisson p.d.f. applies to the situations where we detect events but do not know the total
number of trials. An example is a radioactive source where we detect the decays but do not
detect the non-decays.

Poisson Distribution 21
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r1!r2!r3! · · · rk!

◆
p
r1
1 · pr22 · · · prk

k
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This distribution is called the multinomial distribution and it is what describes the probability
to have ri events in bin i of an histogram with n entries. The corresponding properties are:

< ri >= npi and V (ri) = npi(1� pi). (2.1.15)

2.1.5 Poisson Distribution

The Poisson p.d.f. applies to the situations where we detect events but do not know the total
number of trials. An example is a radioactive source where we detect the decays but do not
detect the non-decays.

n = 100 
p = [0.1, 0.2, 0.5, 0.3, 0.1] 
r  = [10, 15, 55, 35, 10]

Example: the multinomial distribution describes the 
probability to have ri entries in bin i for  
an histogram with n bins

P (r1, ..., rk;n, p1, ..., pk) =

✓
n!

r1!...rk!

◆
pr11 ...prkk
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Multinomial distribution
The covariance is: 

cov(ri, rj) = �npipj

and the correlation coefficient:

⇢ij =
cov(ri, rj)

�i�j
= �

r
pi

1� pi

pj
1� pj

NB: the correlation among bins comes from the fact that the total number of entries  
n = r1+…+rk is fixed, i.e. ri = n - r1 - … - ri1 - ri+1 - … - rk. 
If n is not fixed, i.e. n is another random variable, the bin entries are uncorrelated and 
instead of having a multinomial we will have a Poisson for each bin.
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The Poisson distribution is used when we know the number of outcomes but we don’t 
know the number of trials. The probability to observe r events when we expect λ is: 

Example: with a radioactive source we measure the number of decays but we don’t 
have the total number of nuclei (or the non decayed nuclei) 

The Poisson distribution can be obtained as the limit of the binomial distribution when 
the number of independent trials is high, the success probability is small and constant 
and their product is constant (average rate) pn = λ (derivation on the next slide).

30

Poisson distribution

22 CHAPTER 2. PROBABILITY DISTRIBUTIONS

The distribution can be obtained as a limit of the binomial: let � be the probability to
observe a radioactive decay in a period T of time. Now divide the period T in n time
intervals �T = T/n small enough that the probability to observe two decays in an interval
is negligible. The probability to observe a decay in �T is then �/n, while the probability to
observe r decays in the period T is given by the binomial probability to observe r events in
n trials each of which has a probability �/n.

P

✓
r;n,

�

n

◆
=

n!

(n� r)!

1

r!

✓
�

n

◆
r
✓
1� �

n

◆
n�r

(2.1.16)

Under the assumption that n >> r then:

n!

(n� r)!
= n(n� 1)(n� 2) . . . (n� r + 1) ⇠ n

r (2.1.17)

and ✓
1� �

n

◆
n�r

⇠
✓
1� �

n

◆
n

! e
�� for n ! 1 (2.1.18)

and replacing this in the binomial expression in Eq. 2.1.16 we obtain the Poisson p.d.f:

P (r;�) =
�
r
e
��

r!
. (2.1.19)

The Poisson distribution can so be seen as the limit of the binomial distribution when
the number n of trials becomes very large and the probability p for a single event becomes
very small, while the product pn = � remains a (finite) constant. It gives the probability of
getting r events if the expected number (mean) is �.

Properties of the Poisson distribution:

• it is normalized to 1:
P1

r=0 P (r) = e
��

P1
r=0

�
r

r! = e
��

e
+� = 1

• the mean < r > is �: < r >=
P1

r=0 r ·
e
��

�
r

r! = �

• the variance is V (r) = �

• P (r + s;�r,�s) =
(�r+�s)(r+s)

e
�(�r+�s)

(r+s)! : the p.d.f. of the sum of two Poisson distributed
random variables is also Poisson with � equal to the sum of the �s of the individual
Poissons

Example An historical example 1 is the number of deadly horse accidents in the Prussian
army. The fatal incidents were registered over twenty years in ten di↵erent cavalry corps.
There was a total of 122 fatal incidents, and therefore the expectation value per corps per
year is given by � = 122/200 = 0.61. The probability that no soldier is killed per year and
corps is P (0; 0.61) = e

�0.61 · 0.610/0! = 0.5434. To get the total events (of no incidents) in
one year and per corps, we have to multiply with the number of observed cases (here 200),
which yields 200 · 0.5434 = 108.7. The total statistics of the Prussian cavalry is summarized
in Tab. 2.1.1, in agreement with the Poisson expectation. 2

The Poisson distribution is very often used in counting experiments:
1
This example is mentioned for the first time in the book from L. von Bortkiewicz in the year 1898: ”Das

Gesetz der kleinen Zahlen.”

First two moments: 
   <r> = λ 
   V(r) = λ    <— this is the origin of the n ±√n uncertainty in counting experiments 
                          The number of observed counts fluctuates around its mean with this s.d.
Reproductive property: if X is Poisson distributed as P(r; λr) and Y is Poisson distributed 
as P(s; λs) then X+Y is Poisson distributed as P(r+s;  λr+λs). 

Example: number of muons from two different sources (e.g. pions and kaons decays)
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Poisson distribution

Poisson Distribution 19

Figure 2.1.2: The binomial distribution for a fixed p = 0.4 and di↵erent values for n.

the probability of our arrangement, multiplied with the number of possible distinguishable
arrangements:

P (r1, .., rk;N, p1, pk) =

✓
r!

r1!r2!r3! · · · rk!

◆
p
r1
1 · pr22 · · · prk

k
. (2.1.14)

This distribution is called the multinomial distribution and it is what describes the probability
to have ri events in bin i of an histogram with n entries. The corresponding properties are:

< ri >= npi and V (ri) = npi(1� pi). (2.1.15)

2.1.5 Poisson Distribution

The Poisson p.d.f. applies to the situations where we detect events but do not know the total
number of trials. An example is a radioactive source where we detect the decays but do not
detect the non-decays.
The distribution can be obtained as a limit of the binomial: let � be the probability to
observe a radioactive decay in a period T of time. Now divide the period T in n time
intervals �T = T/n small enough that the probability to observe two decays in an interval

20 CHAPTER 2. PROBABILITY DISTRIBUTIONS

is negligible. The probability to observe a decay in �T is then �/n, while the probability to
observe r decays in the period T is given by the binomial probability to observe r events in
n trials each of which has a probability �/n.

P

✓
r;n,

�

n

◆
=

n!

(n� r)!

1

r!

✓
�

n

◆
r
✓
1� �

n

◆
n�r

(2.1.16)

Under the assumption that n >> r then:

n!

(n� r)!
= n(n� 1)(n� 2) . . . (n� r + 1) ⇠ n

r (2.1.17)

and ✓
1� �

n

◆
n�r

⇠
✓
1� �

n

◆
n

! e
�� for n ! 1 (2.1.18)

and replacing this in the binomial expression in Eq. 2.1.16 we obtain the Poisson p.d.f:

P (r;�) =
�
r
e
��

r!
. (2.1.19)

The Poisson distribution can so be seen as the limit of the binomial distribution when
the number n of trials becomes very large and the probability p for a single event becomes
very small, while the product pn = � remains a (finite) constant. It gives the probability of
getting r events if the expected number (mean) is �.

Properties of the Poisson distribution:

• it is normalized to 1:
P1

r=0 P (r) = e
��

P1
r=0

�
r

r! = e
��

e
+� = 1

• the mean < r > is �: < r >=
P1

r=0 r ·
e
��

�
r

r! = �

• the variance is V (r) = �

• P (r + s;�r,�s) =
(�r+�s)(r+s)

e
�(�r+�s)

(r+s)! : the p.d.f. of the sum of two Poisson distributed
random variables is also Poisson with � equal to the sum of the �s of the individual
Poissons

Example An historical example 1 is the number of deadly horse accidents in the Prussian
army. The fatal incidents were registered over twenty years in ten di↵erent cavalry corps.
There was a total of 122 fatal incidents, and therefore the expectation value per corps per
year is given by � = 122/200 = 0.61. The probability that no soldier is killed per year and
corps is P (0; 0.61) = e

�0.61 · 0.610/0! = 0.5434. To get the total events (of no incidents) in
one year and per corps, we have to multiply with the number of observed cases (here 200),
which yields 200 · 0.5434 = 108.7. The total statistics of the Prussian cavalry is summarized
in Tab. 2.1.1, in agreement with the Poisson expectation. 2

The Poisson distribution is very often used in counting experiments:

1
This example is mentioned for the first time in the book from L. von Bortkiewicz in the year 1898: ”Das

Gesetz der kleinen Zahlen.”
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Poisson distribution24 CHAPTER 2. PROBABILITY DISTRIBUTIONS

Figure 2.1.3: The Poisson distribution for di↵erent values of �.

f(x) =

(
1

b�a
if a  x  b

0 else.
(2.2.20)

The expectation value and the variance are given by

< x > =

Z
b

a

x

b� a
dx =

1

2
(a+ b) (2.2.21)

V ar(x) =
1

12
(b� a)2 (2.2.22)

Example Consider a detector built as a single strip of silicon with a width of 1mm. If
a charged particle hits it, the detector reads 1 otherwise zero (binary readout). What is
the spacial resolution of the detector? Estimating the resolution as the variance of the
corresponding uniform distribution, we get ⇠ 290µm. 2

Some examples:

When λ < 1 the most probable value of the distribution is 0 
When λ is integer then both λ=n and λ=n-1 are equally probable
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Poisson distribution
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The distribution can be obtained as a limit of the binomial: let � be the probability to
observe a radioactive decay in a period T of time. Now divide the period T in n time
intervals �T = T/n small enough that the probability to observe two decays in an interval
is negligible. The probability to observe a decay in �T is then �/n, while the probability to
observe r decays in the period T is given by the binomial probability to observe r events in
n trials each of which has a probability �/n.
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Under the assumption that n >> r then:

n!

(n� r)!
= n(n� 1)(n� 2) . . . (n� r + 1) ⇠ n

r (2.1.17)

and ✓
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! e
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and replacing this in the binomial expression in Eq. 2.1.16 we obtain the Poisson p.d.f:

P (r;�) =
�
r
e
��

r!
. (2.1.19)

The Poisson distribution can so be seen as the limit of the binomial distribution when
the number n of trials becomes very large and the probability p for a single event becomes
very small, while the product pn = � remains a (finite) constant. It gives the probability of
getting r events if the expected number (mean) is �.

Properties of the Poisson distribution:

• it is normalized to 1:
P1

r=0 P (r) = e
��

P1
r=0

�
r

r! = e
��

e
+� = 1

• the mean < r > is �: < r >=
P1

r=0 r ·
e
��

�
r

r! = �

• the variance is V (r) = �

• P (r + s;�r,�s) =
(�r+�s)(r+s)

e
�(�r+�s)

(r+s)! : the p.d.f. of the sum of two Poisson distributed
random variables is also Poisson with � equal to the sum of the �s of the individual
Poissons

Example An historical example 1 is the number of deadly horse accidents in the Prussian
army. The fatal incidents were registered over twenty years in ten di↵erent cavalry corps.
There was a total of 122 fatal incidents, and therefore the expectation value per corps per
year is given by � = 122/200 = 0.61. The probability that no soldier is killed per year and
corps is P (0; 0.61) = e

�0.61 · 0.610/0! = 0.5434. To get the total events (of no incidents) in
one year and per corps, we have to multiply with the number of observed cases (here 200),
which yields 200 · 0.5434 = 108.7. The total statistics of the Prussian cavalry is summarized
in Tab. 2.1.1, in agreement with the Poisson expectation. 2

The Poisson distribution is very often used in counting experiments:
1
This example is mentioned for the first time in the book from L. von Bortkiewicz in the year 1898: ”Das

Gesetz der kleinen Zahlen.”

Example:

2.2. CONTINUOUS DISTRIBUTIONS 23

Fatal incidents per corps and year Reported incidents Poisson distribution
0 109 108.7
1 65 66.3
2 22 20.2
3 3 4.1
4 1 0.6

Table 2.1.1: The total statistics of deadly accidents of Prussian soldiers.

• number of particles which are registered by a detector in the time interval t, if the flux
� and the e�ciency of the detector are independent of time and the dead time of the
detector ⌧ is su�ciently small, such that �⌧ ⌧ 1

• number of interactions caused by an intense beam of particles which travel through a
thin foil

• number of entries in a histogram, if the data are taken during a fixed time interval

• number of flat tires when traveling a certain distance, if the expectation value flats/distance
is constant

Some counter-examples, in which the Poisson distribution cannot be used:

• the decay of a small amount of radioactive material in a certain time interval, if this
interval is comparable to the lifetime

• the number of interactions of a beam of only a few particles which pass through a thick
foil

In both cases we have the event rate is not constant (in the first it decreases with time, in
the second with distance) and therefore the Poisson distribution cannot be applied.
The Poisson p.d.f. requires that the events be independent. Consider the case of a counter
with a dead time of 1 µsec. This means that if a second particle passes through the counter
within 1 µsec after one which was recorded, the counter is incapable of recording the second
particle. Thus the detection of a particle is not independent of the detection of other particles.
If the particle flux is low, the chance of a second particle within the dead time is so small that
it can be neglected. However, if the flux is high it cannot be. No matter how high the flux,
the counter cannot count more than 106 particles per second. In high fluxes, the number of
particles detected in some time interval will not be Poisson distributed.

Fig. 2.1.3 shows the Poisson distribution for some values of �.

2.2 Continuous Distributions

2.2.1 Uniform Distribution

The probability density function of the uniform distribution in the interval [a, b] is given by
(see Fig. 2.2.4):



Mauro Donegà - Severian Gvasaliya ETHZ                                                              VP - Data Analysis Toolbox
34

Poisson distribution
The Poisson distribution is used to describe counting experiments, provided that the  
assumption “number of trials is high, the success probability is small and constant” is 
fulfilled. 

Examples described by a Poisson distribution: 
- number of interactions caused by an intense beam of particles on a thin target 
- number of entries in an histogram for events taken in a given time period (integral 

not fixed) 

Examples not described by a Poisson distribution: 
- decay of a small amount of radioactive material in a time interval comparable to its 
lifetime 
- number of interactions caused by an intense beam of particles on a thick target 
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Poisson distribution
The Poisson p.d.f. requires that the events be independent.  

Example: Consider the case of a counter with a dead time of 1 μsec.  
In this case for high fluxes, the number of particles detected in some time interval will 
not be Poisson distributed because the detection of a particle is not independent of the 
detection of other particles.  

- If the particle flux is low, the chance of a second particle within the dead time is 
small and it can be neglected —> Poisson distributed  

- If the flux is high the dead time cannot be —> not Poisson distributed 
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Continuous pdfs
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Uniform distribution
The uniform pdf is  

24 CHAPTER 2. PROBABILITY DISTRIBUTIONS

Figure 2.1.3: The Poisson distribution for di↵erent values of �.

f(x) =

(
1

b�a
if a  x  b

0 else.
(2.2.20)

The expectation value and the variance are given by

< x > =

Z
b

a

x

b� a
dx =

1

2
(a+ b) (2.2.21)

V ar(x) =
1

12
(b� a)2 (2.2.22)

Example Consider a detector built as a single strip of silicon with a width of 1mm. If
a charged particle hits it, the detector reads 1 otherwise zero (binary readout). What is
the spacial resolution of the detector? Estimating the resolution as the variance of the
corresponding uniform distribution, we get ⇠ 290µm. 2

The probability to obtain a random value between a and b is constant 

First two moments:
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Figure 2.1.3: The Poisson distribution for di↵erent values of �.

f(x) =

(
1

b�a
if a  x  b

0 else.
(2.2.20)

The expectation value and the variance are given by

< x > =

Z
b

a

x

b� a
dx =

1

2
(a+ b) (2.2.21)

V ar(x) =
1

12
(b� a)2 (2.2.22)

Example Consider a detector built as a single strip of silicon with a width of 1mm. If
a charged particle hits it, the detector reads 1 otherwise zero (binary readout). What is
the spacial resolution of the detector? Estimating the resolution as the variance of the
corresponding uniform distribution, we get ⇠ 290µm. 2Example: what is the resolution of a single silicon strip detector of width 1 mm ? 

You have a binary signal: if a charge particle hits the strip you have a signal, if it 
misses the signal you don’t. Take as resolution the 1/√12 = 290 um.
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Gaussian distribution
The gaussian distribution is how you expect your measurements to be distributed when 
they are affected by a large number of additive 'noise' components.

Gaussian or Normal Distribution 25

Figure 2.2.4: The uniform distribution.

2.2.2 Gaussian or Normal Distribution

The Gaussian2 or normal distribution is probably the most important and useful distribution
we know3. The probability density function is

f(x;µ,�) =
1p
2⇡�

e
� (x�µ)2

2�2 . (2.2.23)

The Gaussian distribution is described by two parameters: the mean value µ and the variance
�
2 or the standard deviation �. By substituting z = (x�µ)/� we obtain the so-called normal

or standardized Gaussian distribution:

N(0, 1) =
1p
2⇡

e
�z

2
/2
. (2.2.24)

It has an mean of zero and standard deviation 1.

Properties of the normal distribution are:

• it is normalized to 1:
R +1
�1 P (x;µ,�)dx = 1

• µ is the first moment of the distribution:
R +1
�1 xP (x;µ,�)dx = µ

• being a symmetric distribution, µ is also its mode and median

• its second central moment is �2:
R +1
�1 (x� µ)2P (x;µ,�)dx = �

2

If X and Y are two independent r.v.’s distributed as f(x;µx,�x) and f(y;µy,�y) then Z =
X + Y is distributed as f(z;µz,�z) with µz = µx + µy and �z = �x + �y.

2
C.F. Gauss did not discovery it all alone. Independently, Laplace and de Moivre knew about this distri-

bution.
3
A legend says that Gauss did describe the size of bread loaves in the city of Königsberg with the normal

distribution.

The first two moments are:

z =
x� µ

�

Basic properties: 
- symmetric about μ 
- σ characterize the width 
- inflection point happens at x = σ 
- the maximum is at x = μ  ; G(μ, σ) = 1/√2π σ 
- FWHM = 2 σ√2ln2 = 2.355 σ

The “standard distribution” G(μ=0,σ=1) 
can be obtained by changing  variable
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2.2.2 Gaussian or Normal Distribution

The Gaussian2 or normal distribution is probably the most important and useful distribution
we know3. The probability density function is

f(x;µ,�) =
1p
2⇡�

e
� (x�µ)2

2�2 . (2.2.23)

The Gaussian distribution is described by two parameters: the mean value µ and the variance
�
2 or the standard deviation �. By substituting z = (x�µ)/� we obtain the so-called normal

or standardized Gaussian distribution:

N(0, 1) =
1p
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It has an mean of zero and standard deviation 1.

Properties of the normal distribution are:

• it is normalized to 1:
R +1
�1 P (x;µ,�)dx = 1

• µ is the first moment of the distribution:
R +1
�1 xP (x;µ,�)dx = µ

• being a symmetric distribution, µ is also its mode and median

• its second central moment is �2:
R +1
�1 (x� µ)2P (x;µ,�)dx = �

2

If X and Y are two independent r.v.’s distributed as f(x;µx,�x) and f(y;µy,�y) then Z =
X + Y is distributed as f(z;µz,�z) with µz = µx + µy and �z = �x + �y.

2
C.F. Gauss did not discovery it all alone. Independently, Laplace and de Moivre knew about this distri-

bution.
3
A legend says that Gauss did describe the size of bread loaves in the city of Königsberg with the normal

distribution. Reproductive property: If X and Y are two independent r.v.’s distributed as f(x; μx, σx) and  
f(y; μy, σy) then Z = X+Y is distributed as f(z;μz,σz) with μz =μx+μy and σz =σx+σy.  

[wiki]
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Cumulative of the Gaussian

Double sided tail probability 

P(|x- μ | ≤ 1σ ) =68.27% 
P(|x- μ | ≤ 2σ ) = 95.45% 
P(|x- μ | ≤ 3σ ) = 99.73% 

90%    = P(|x- μ| ≤ 1.645σ) 
95%    = P(|x- μ| ≤ 1.960σ)  
99%    = P(|x- μ| ≤ 2.576σ) 
99.9% = P(|x- μ| ≤ 3.290σ) 

f(x)

x [σ]

50%

84.15%

15.87%

median

2.28%

97.72%

Gaussian or Normal Distribution 27

• 90% of the area lies within ±1.645� around the mean µ

• 95% lies within ±1.960� around the mean µ

• 99% lies within ±2.576� around the mean µ

• 99.9% lies within ±3.290� around the mean µ

The integrated Gaussian function �(x) can also be expressed by the so-called error func-
tion erf(x):

�(x) =
1p
2⇡�

Z
x

�1
e
�(t�µ)2/2�2

dt (2.2.25)

erf(x) =
2p
⇡

Z
x

0
e
�t

2
dt (2.2.26)

=> �(x) =
1

2

✓
1 + erf(

x� µp
2�

)

◆
(2.2.27)

The Full Width Half Maximum (FWHM) is very useful to get a quick estimate for the
width of a distribution and for the specific case of the Gaussian we have:

FWHM = 2�
p
2 ln 2 = 2.355�. (2.2.28)

The gaussian distribution is the limiting case for several other p.d.f.’s we will encounter later
(see Fig. 2.2.6). This is actually a consequence of the central limit theorem (CLT) (discussed
in Sec. 2.4).

Figure 2.2.6: Limiting cases.

Single sided  
tail probabilities
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Multidimensional Gaussian

      and       are column vectors with the components  
       and      are the corresponding row vectors  
  V is the covariance matrix (|V | its the determinant ) 

Properties: 
- ⟨xi⟩ = μi 
- V(xi) = Vii 
- cov(xi,xj)=Vij 

f(x, y;µu,�x, µy,�y) =
1p
2⇡�x

1p
2⇡�y

e
� (x�µx)2

2�2
x e

� (x�µy)2

2�2
y

Or in general with N correlated variables

Properties: 
- ⟨x⟩ = μx    and  ⟨y⟩ = μy 
-  V(x) = σx   and V(y) = σy

f(~x; ~µ, V ) =
1

(2⇡)N/2|V |1/2
exp

✓
�1

2
(~x� ~µ)TV �1(~x� ~µ)

◆

~x ~µ
~µT~xT
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Exponential distribution

Proper decay time (length) of an unstable particle. 
(the steepest the distribution the shorter the lifetime)

f(ct) =
1

c⌧
e�

ct
c⌧f(t) =

1

⌧
e�

t
⌧

t: proper decay time ct: proper decay length

Exponential Distribution 31

Figure 2.2.9: The exponential distribution for di↵erent values of ⌧ (right: linear, left: loga-
rithmic scale).

the dynode and emits other secondary electrons which gets accelerated to the next dynode.
This process if repeated several times (as many as the number of dynodes in the PMT). At
every stage the number of secondary electrons emitted depends on the voltage applied. If the
amplification per step is ai, then the number of electrons after the k

th step, nk = ⇧k

i=0ai, is
approximately log-normal distributed. 2

2.2.5 Exponential Distribution

The exponential distribution (see Fig. 2.2.9) is defined for a continuous variable t (0  t  1)
by:

f(t, ⌧) =
1

⌧
e
�t/⌧

. (2.2.41)

The probability density is characterized by one single parameter ⌧ .

• The expectation value is

h⌧i = 1

⌧

Z 1

0
te

�t/⌧
dt = ⌧. (2.2.42)

• The variance is V ar(t) = ⌧
2.

An example for the application of the exponential distribution is the description of the proper-
decay-time decay (t) of an unstable particles. The parameter ⌧ corresponds in this case to
the mean lifetime of the particle.

2.2.6 Gamma Distribution

The gamma distribution (see Fig. 2.2.10) is given by:

f(x; k,�) = �
k
x
k�1

e
��x

�(k)
. (2.2.43)

Properties:
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• The variance is V ar(t) = ⌧
2.

An example for the application of the exponential distribution is the description of the proper-
decay-time decay (t) of an unstable particles. The parameter ⌧ corresponds in this case to
the mean lifetime of the particle.

2.2.6 Gamma Distribution

The gamma distribution (see Fig. 2.2.10) is given by:

f(x; k,�) = �
k
x
k�1

e
��x

�(k)
. (2.2.43)

linear log

Example: unstable particle/nucleus lifetime Example: charge of a short-circuited capacitor

where
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LogNormal distribution

If y obeys a normal distribution with μ, then x = exp(y) obeys a log-normal distribution (y = ln x)

30 CHAPTER 2. PROBABILITY DISTRIBUTIONS

Figure 2.2.8: The log-normal distribution for di↵erent values of the defining parameters.

Replacing �
2 for Q we have:

�
2(1) =

1p
2⇡�2

e
� 1

2�
2

(2.2.37)

(careful! the same symbol is used for the random variable and the p.d.f.).

2.2.4 Log-Normal Distribution

If y obeys a normal distribution with mean µ and standard deviation �, then it follows that
x = e

y obeys a log-normal distribution. This means that ln(x) is normal distributed (see
Fig. 2.2.8):

f(x;µ,�) =
1p
2⇡�2

1

x
e
�(lnx�µ)2/2�2

. (2.2.38)

The expectation value and the variance are given by:

< x > = e
(µ+ 1

2�
2) (2.2.39)

V ar(x) = e
(2µ+�

2)(e�
2 � 1) (2.2.40)

The log-normal distribution is typically used when the resolution of a measurement apparatus
is composed by di↵erent sources, each contributing a (multiplicative) amount to the overall
resolution. As the sum of many small contributions of any random distribution converges by
the central limit theorem to a Gaussian distribution, so the product of many small contribu-
tions is distributed according to a log-normal distribution.

Example Consider the signal of a photomultiplier (PMT), which converts light signals into
electric signals. Each photon hitting the photo-cathode emits an electron, which gets ac-
celerated by an electric field generated by an electrode (dynode) behind. The electron hits

Properties:
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Replacing �
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(careful! the same symbol is used for the random variable and the p.d.f.).

2.2.4 Log-Normal Distribution

If y obeys a normal distribution with mean µ and standard deviation �, then it follows that
x = e

y obeys a log-normal distribution. This means that ln(x) is normal distributed (see
Fig. 2.2.8):

f(x;µ,�) =
1p
2⇡�2

1

x
e
�(lnx�µ)2/2�2

. (2.2.38)

The expectation value and the variance are given by:

< x > = e
(µ+ 1

2�
2) (2.2.39)

V ar(x) = e
(2µ+�

2)(e�
2 � 1) (2.2.40)

The log-normal distribution is typically used when the resolution of a measurement apparatus
is composed by di↵erent sources, each contributing a (multiplicative) amount to the overall
resolution. As the sum of many small contributions of any random distribution converges by
the central limit theorem to a Gaussian distribution, so the product of many small contribu-
tions is distributed according to a log-normal distribution.

Example Consider the signal of a photomultiplier (PMT), which converts light signals into
electric signals. Each photon hitting the photo-cathode emits an electron, which gets ac-
celerated by an electric field generated by an electrode (dynode) behind. The electron hits

The log-normal distribution is used to model the 
response of a system where the resolution 
is given by the product of the effect of several 
sources (as opposed to the gaussian 
where you have additive contributions)
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LogNormal distribution
Example Consider the signal of a photomultiplier (PMT), which converts light signals into 
electric signals. Each photon hitting the photo-cathode emits an electron, which gets 
accelerated by an electric field generated by an electrode (dynode) behind. The electron 
hits the dynode and emits other secondary electrons which gets accelerated to the next 
dynode. This process if repeated several times (as many as the number of dynodes in the 
PMT). At every stage the number of secondary electrons emitted depends on the voltage 
applied.  

If the amplification per step is ai, then the number of electrons after the kth step,  

                       is approximately log-normal distributed.

Exponential Distribution 31

Figure 2.2.9: The exponential distribution for di↵erent values of ⌧ (right: linear, left: loga-
rithmic scale).

the dynode and emits other secondary electrons which gets accelerated to the next dynode.
This process if repeated several times (as many as the number of dynodes in the PMT). At
every stage the number of secondary electrons emitted depends on the voltage applied. If the
amplification per step is ai, then the number of electrons after the k

th step, nk = ⇧k

i=0ai, is
approximately log-normal distributed. 2

2.2.5 Exponential Distribution

The exponential distribution (see Fig. 2.2.9) is defined for a continuous variable t (0  t  1)
by:

f(t, ⌧) =
1

⌧
e
�t/⌧

. (2.2.41)

The probability density is characterized by one single parameter ⌧ .

• The expectation value is

h⌧i = 1

⌧

Z 1

0
te

�t/⌧
dt = ⌧. (2.2.42)

• The variance is V ar(t) = ⌧
2.

An example for the application of the exponential distribution is the description of the proper-
decay-time decay (t) of an unstable particles. The parameter ⌧ corresponds in this case to
the mean lifetime of the particle.

2.2.6 Gamma Distribution

The gamma distribution (see Fig. 2.2.10) is given by:

f(x; k,�) = �
k
x
k�1

e
��x

�(k)
. (2.2.43)
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χ2 (chi-squared) distribution
The chi-squared pdf is the joint probability of the product of n gaussians

28 CHAPTER 2. PROBABILITY DISTRIBUTIONS

N-dimensional Gaussian Distribution
The N-dimensional Gaussian distribution is defined by

f(x;µ, V ) =
1

(2⇡)N/2|V |1/2
exp

✓
�1

2
(x� µ)TV �1(x� µ)

◆
. (2.2.29)

Here, x and µ are column vectors with the components x1, . . . , xN and µ1, . . . , µN , respec-
tively. The transposed vectors xT and µ

T are the corresponding row vectors and |V | is the
determinant of the symmetric N ⇥N covariance matrix V . The expectation values and the
covariances are given by:

• hxii = µi

• V (xi) = Vii

• cov(xi, xj) = Vij

In the simplified case of a two-dimensional Gaussian distribution we can write

f(x1, x2;µ1 µ2,�1,�2, ⇢) =
1

2⇡�1�2
p
1� ⇢2

· exp
✓
� 1

2(1� ⇢2)

◆

⇥ exp

"✓
x1 � µ1

�1

◆2✓
x2 � µ2

�2

◆2

� 2⇢

✓
x1 � µ1

�1

◆✓
x2 � µ2

�2

◆#
.

We will come back to the specific case of the gaussian distribution in multiple dimensions in
Ch. 3 when talking about the error matrix.

2.2.3 �2 Distribution

Assume that x1, x2, · · · , xn are independent random variables, which obey a (standardized)
Gaussian distribution with mean 0 and variance 1. Then the joint p.d.f. is:

f(x;µ,�) =
nY

i=1

1p
2⇡�i

exp

"
�1

2

✓
xi � µi

�i

◆2
#

(2.2.30)

= exp

"
�1

2

nX

i=1

✓
xi � µi

�i

◆2
#

nY

i=1

1p
2⇡�i

(2.2.31)

Then the variable �
2(n) defined as

�
2(n) =

nX

i=1

✓
xi � µi

�i

◆2

(2.2.32)

being a function of random variables is itself a random variable distributed as a �2 distribution
with n degrees of freedom. The probability density is given by (see Fig. 2.2.7):

�
2(n) = f(�2;n) =

(�2)n/2�1
e
��

2
/2

�(n/2)2n/2
. (2.2.33)

The �
2(n) p.d.f. has the properties:
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We will come back to the specific case of the gaussian distribution in multiple dimensions in
Ch. 3 when talking about the error matrix.
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being a function of random variables is itself a random variable distributed as a �2 distribution
with n degrees of freedom. The probability density is given by (see Fig. 2.2.7):
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The �
2(n) p.d.f. has the properties:

The pdf is:

We define as the chi-squared variable 
with n-degrees of freedom
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Ch. 3 when talking about the error matrix.
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being a function of random variables is itself a random variable distributed as a �2 distribution
with n degrees of freedom. The probability density is given by (see Fig. 2.2.7):
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The �
2(n) p.d.f. has the properties:This will be particularly relevant when discussing least-squares fits
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χ2 (chi-squared) distribution

Properties: 
- mean=n 
- variance = 2n  
- mode=n-2 for n≥2 and 0 for n≤2

We define: χ2(n)/n as reduced χ2.  (we will encounter this when talking about goodness of fit)  

For n → ∞, χ2(n) → Gaussian(χ2;n,2n) 

Typically we can approximate the χ2 distribution to a gaussian for n ≥ 30. 

[wiki]
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Student’s t-distribution
The Student’s t distribution can be used to estimate the mean of a normally distributed parent 
distribution when the sample size is small and parent distribution standard deviation is 
unknown and the one evaluated from the sample s is used. 

Take n samples from a gaussian parent and compute:

mean variance

the random variable

is gaussian distributed with mean 0 and variance 1.

the random variable 
X̄ � µ

S/
p
n

has a student’s distribution with n-1 degrees of freedom

[wiki]
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Cauchy / Lorentz / Breit-Wigner

Or as standard Cauchy distribution:

34 CHAPTER 2. PROBABILITY DISTRIBUTIONS

Figure 2.2.12: The F-distribution distribution for di↵erent values of the parameters.

usually puts the larger value on top so that F � 1.
The F distribution is used to test the statistical compatibility between the variances of
two di↵erent samples, which are obtained form the same underlying distribution (more in
Sec. 8.7).

2.2.9 Weibull Distribution

The Weibull distribution (see Fig. 2.2.13) was originally invented to describe the rate of
failures of light bulbs:

P (x;↵,�) = ↵�(�x)↵�1
e
�(�x)↵

. (2.2.49)

with x � 0 and ↵,� > 0. The parameter ↵ is just a scale factor and � describes the width of
the maximum. The exponential distribution is a special case (↵ = 1), when the probability
of failure at time t is independent of t. The Weibull distribution is very useful to describe
the reliability and to predict failure rates. The expectation value of the Weibull distribution
is �( 1

↵
+ 1) 1

�
and the variance is 1

�2

�
�
�
2
↵
+ 1

�
� �2

�
1
↵
+ 1

��

2.2.10 Cauchy (Breit-Wigner) Distribution

The Cauchy probability density function is:

f(x) =
1

⇡

1

1 + x2
. (2.2.50)

For large values of x it decreases only slowly. Neither the mean nor the variance are defined,
because the corresponding integrals are divergent. The particular Cauchy distribution of the
form

f(m;M,�) =
1

2⇡

�

(m�M)2 + (�/2)2
(2.2.51)

Nor the mean nor the variance are defined ! 
(divergent integrals)

In HEP is usually written as (Breit-Wigner):
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Figure 2.2.12: The F-distribution distribution for di↵erent values of the parameters.
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2.2.10 Cauchy (Breit-Wigner) Distribution

The Cauchy probability density function is:

f(x) =
1
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1

1 + x2
. (2.2.50)

For large values of x it decreases only slowly. Neither the mean nor the variance are defined,
because the corresponding integrals are divergent. The particular Cauchy distribution of the
form

f(m;M,�) =
1

2⇡

�

(m�M)2 + (�/2)2
(2.2.51)

which is used to describe the cross section near a resonance of mass M and width Γ.  
The Breit-Wigner is the Fourier transform of the wave function of an unstable particle:
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Figure 2.2.15: Straggling functions in silicon for 500 MeV pions, normalized to unity at the
most probable value �p/x. The width w is the full width at half maximum. [20]

comes as the Fourier transformation of the wave function of an unstable particle:

 (t) / e
�iEit/h̄e

��t/2 (2.2.52)

�(!) /
Z 1

0
 (t)ei!tdt =

i

(! � !0 + i
�
2 )

(2.2.53)

which squared gives:

|�(!)|2 = 1

(! � !0)2 +
�2

4

(2.2.54)

2.2.11 Landau Distribution

The Landau distribution (see Fig. 2.2.15) is used to describe the distribution of the energy loss
x (dimensionless quantity proportional to dE) of a charged particle (by ionisation) passing
through a thin layer of matter:

p(x) =
1

2⇡i

Z
c+i1

c�i1
exp(s log s+ xs)ds (c > 0). (2.2.55)

The long tail towards large energies models the large energy loss fluctuations in thin layers.
The mean and the variance of the distribution are not defined.
Often it can be found approximated as:

p(x) =
1p
2⇡

e
� 1

2(x+e
�x) (2.2.56)

which squares gives:
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Figure 2.2.15: Straggling functions in silicon for 500 MeV pions, normalized to unity at the
most probable value �p/x. The width w is the full width at half maximum. [20]
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2.2.11 Landau Distribution

The Landau distribution (see Fig. 2.2.15) is used to describe the distribution of the energy loss
x (dimensionless quantity proportional to dE) of a charged particle (by ionisation) passing
through a thin layer of matter:

p(x) =
1

2⇡i

Z
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c�i1
exp(s log s+ xs)ds (c > 0). (2.2.55)

The long tail towards large energies models the large energy loss fluctuations in thin layers.
The mean and the variance of the distribution are not defined.
Often it can be found approximated as:
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Cauchy / Lorentz / Breit-Wigner
Compared to a gaussian:
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Landau distribution
Used to describe the distribution of the energy 
loss of a charged particle (by ionisation) 
passing through a thin layer of matter. 

33. Passage of particles through matter 13
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Figure 33.8: Straggling functions in silicon for 500 MeV pions, normalized to unity
at the most probable value δp/x. The width w is the full width at half maximum.

displaces the peak of the distribution, usually toward a higher value. 90% of the collisions
(M1(⟨∆⟩)/M1(∞)) contribute to energy deposits below the mean. It is the very rare
high-energy-transfer collisions, extending to Wmax at several GeV, that drives the mean
into the tail of the distribution. The large weight of these rare events makes the mean
of an experimental distribution consisting of a few hundred events subject to large
fluctuations and sensitive to cuts. The mean of the energy loss given by the Bethe
equation, Eq. (33.5), is thus ill-defined experimentally and is not useful for describing
energy loss by single particles.♮ It rises as ln γ because Wmax increases as γ at high
energies. The most probable energy loss should be used.

A practical example: For muons traversing 0.25 inches of PVT plastic scintillator, the
ratio of the most probable E loss rate to the mean loss rate via the Bethe equation is
[0.69, 0.57, 0.49, 0.42, 0.38] for Tµ = [0.01, 0.1, 1, 10, 100] GeV. Radiative losses add less
than 0.5% to the total mean energy deposit at 10 GeV, but add 7% at 100 GeV. The
most probable E loss rate rises slightly beyond the minimum ionization energy, then is
essentially constant.

The Landau distribution fails to describe energy loss in thin absorbers such as gas TPC
cells [1] and Si detectors [26], as shown clearly in Fig. 1 of Ref. 1 for an argon-filled TPC
cell. Also see Talman [27]. While ∆p/x may be calculated adequately with Eq. (33.11),
the distributions are significantly wider than the Landau width w = 4ξ [Ref. 26, Fig. 15].
Examples for 500 MeV pions incident on thin silicon detectors are shown in Fig. 33.8.
For very thick absorbers the distribution is less skewed but never approaches a Gaussian.

The most probable energy loss, scaled to the mean loss at minimum ionization, is

♮ It does find application in dosimetry, where only bulk deposit is relevant.

October 1, 2016 19:59

normalized to unity
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Figure 2.2.15: Straggling functions in silicon for 500 MeV pions, normalized to unity at the
most probable value �p/x. The width w is the full width at half maximum. [20]
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2.2.11 Landau Distribution

The Landau distribution (see Fig. 2.2.15) is used to describe the distribution of the energy loss
x (dimensionless quantity proportional to dE) of a charged particle (by ionisation) passing
through a thin layer of matter:

p(x) =
1

2⇡i

Z
c+i1

c�i1
exp(s log s+ xs)ds (c > 0). (2.2.55)

The long tail towards large energies models the large energy loss fluctuations in thin layers.
The mean and the variance of the distribution are not defined.
Often it can be found approximated as:

p(x) =
1p
2⇡

e
� 1

2(x+e
�x) (2.2.56)

x = E - Emp 
Emp = most probable energy deposited 

The long tail towards large energies models the large energy loss fluctuations in thin layers. 
The mean and the variance of the distribution are not defined.

Conveniently approximated by 
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Figure 2.2.15: Straggling functions in silicon for 500 MeV pions, normalized to unity at the
most probable value �p/x. The width w is the full width at half maximum. [20]

comes as the Fourier transformation of the wave function of an unstable particle:

 (t) / e
�iEit/h̄e

��t/2 (2.2.52)

�(!) /
Z 1

0
 (t)ei!tdt =

i

(! � !0 + i
�
2 )

(2.2.53)

which squared gives:

|�(!)|2 = 1

(! � !0)2 +
�2

4

(2.2.54)

2.2.11 Landau Distribution

The Landau distribution (see Fig. 2.2.15) is used to describe the distribution of the energy loss
x (dimensionless quantity proportional to dE) of a charged particle (by ionisation) passing
through a thin layer of matter:

p(x) =
1

2⇡i

Z
c+i1

c�i1
exp(s log s+ xs)ds (c > 0). (2.2.55)

The long tail towards large energies models the large energy loss fluctuations in thin layers.
The mean and the variance of the distribution are not defined.
Often it can be found approximated as:

p(x) =
1p
2⇡

e
� 1

2(x+e
�x) (2.2.56)

[PDG: passage of particles through matter]
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Limits

Gaussian or Normal Distribution 27

• 90% of the area lies within ±1.645� around the mean µ

• 95% lies within ±1.960� around the mean µ

• 99% lies within ±2.576� around the mean µ

• 99.9% lies within ±3.290� around the mean µ

The integrated Gaussian function �(x) can also be expressed by the so-called error func-
tion erf(x):

�(x) =
1p
2⇡�

Z
x

�1
e
�(t�µ)2/2�2

dt (2.2.25)

erf(x) =
2p
⇡

Z
x

0
e
�t

2
dt (2.2.26)

=> �(x) =
1

2

✓
1 + erf(

x� µp
2�

)

◆
(2.2.27)

The Full Width Half Maximum (FWHM) is very useful to get a quick estimate for the
width of a distribution and for the specific case of the Gaussian we have:

FWHM = 2�
p
2 ln 2 = 2.355�. (2.2.28)

The gaussian distribution is the limiting case for several other p.d.f.’s we will encounter later
(see Fig. 2.2.6). This is actually a consequence of the central limit theorem (CLT) (discussed
in Sec. 2.4).

Figure 2.2.6: Limiting cases.

[Metzger]
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Backup
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F distribution
The F-distribution describes the ratio between two random 
variables χ2

1 and χ22,  distributed as a χ2 with ν1 and ν2 degrees of 
freedom. 

The corresponding pdf is:

F Distribution 33

Figure 2.2.11: The Student’s distribution for di↵erent values of n.

If the true mean µ is known, then n = N with N being the number of measurements, if the
true mean is unknown then n = N � 1 because one degree of freedom is used for the sample
mean x̄. The distribution depends only on the sample mean x̄ and the sample variance s.

In general, the variable:

T =
Zp
S2/n

(2.2.46)

is governed by the Student’s t distribution for n degrees of freedom if Z and S
2 are two

independent random variables following respectively a normal distribution N (0, 1) and the
�
2 distribution �

2(n) with n degrees of freedom.

2.2.8 F Distribution

Consider two random variables, �
2
1 and �

2
2, distributed as �

2 with ⌫1 and ⌫2 degrees of
freedom, respectively. We define a new random variable F as:

F =
�
2
1/⌫1

�
2
2/⌫2

(2.2.47)

The random variable F follows the distribution (see Fig. 2.2.12):

f(F ) =

✓
n1

n2

◆
n1/2

· �((n1 + n2)/2)

�(n1/2)�(n2/2)
· F (n1�2)/2

✓
1 +

n1

n2
F

◆�(n1+n2)/2

. (2.2.48)

This distribution is known by many names: Fisher-Snedecor distribution, Fisher distribution,
Snedecor distribution, variance ratio distribution, and F -distribution. By convention, one
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true mean is unknown then n = N � 1 because one degree of freedom is used for the sample
mean x̄. The distribution depends only on the sample mean x̄ and the sample variance s.

In general, the variable:

T =
Zp
S2/n

(2.2.46)

is governed by the Student’s t distribution for n degrees of freedom if Z and S
2 are two

independent random variables following respectively a normal distribution N (0, 1) and the
�
2 distribution �

2(n) with n degrees of freedom.

2.2.8 F Distribution

Consider two random variables, �
2
1 and �

2
2, distributed as �

2 with ⌫1 and ⌫2 degrees of
freedom, respectively. We define a new random variable F as:

F =
�
2
1/⌫1

�
2
2/⌫2

(2.2.47)

The random variable F follows the distribution (see Fig. 2.2.12):

f(F ) =

✓
n1

n2

◆
n1/2

· �((n1 + n2)/2)

�(n1/2)�(n2/2)
· F (n1�2)/2

✓
1 +

n1

n2
F

◆�(n1+n2)/2

. (2.2.48)

This distribution is known by many names: Fisher-Snedecor distribution, Fisher distribution,
Snedecor distribution, variance ratio distribution, and F -distribution. By convention, one

We will encounter this distribution when discussing  
the hypothesis test for the variance of two samples.  
F can be re-written as the ratio of two variances (where 
for convenience the largest one is at the numerator F≥1).

[wiki]
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Random walk

notebook https://gitlab.ethz.ch/mdonega/STAMET_FS18/blob/master/notebooks/randomWalk.ipynb

Example: taken form Feynman Lectures on Physics Ch. 6 Vol 1 

https://gitlab.ethz.ch/mdonega/STAMET_FS18/blob/master/notebooks/randomWalk.ipynb

