Learning goals of the week:
- covariance and correlation
- recall the basics of combinatorial calculus
- be able to work with discrete/continuous distributions
- recall the most common pdfs

Week 3
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Multidimensional pdf’s
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More than one random variable

The output of a measurement can be more than one variable:

Example: the direction of a particle in terms of two angles (x4, X2) =
the four-vectors of a particle (x1, x2, X3, x4) = (pT, 3,$¢, M)

(9,d);

When performing the measurement we are performing a sampling of a 2D (or generally nD)
joint pdf and the probability becomes

P(.I'l < Xy <21+ dayg , Lo < Xo < To + dl’g) = f(il?l,ﬁli'z) dx, dzo
b d
P(CL<X1<b7C<X2<d):/ d331/ dCCQf(CCl,ZCQ)
Marginal pdf: it’s the pdf describing x1 independently of the

value of xo; the 2D probability can be “marginalised / [ ~wiki]
projected” by integrating over one variable:

N ,
g ‘ 1‘
> 06 | 2,
—|—OO 2 o4 | =
f1($1) — f(3717 $2) dxs 0 /,J
+00 N o
fa(w2) = f @y, 2) day e
— 00 3 WL a

3
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More than one random variable

Conditional pdf: it's the pdf of x2 for a
fixed value of x1: f(x2o|x1)

In plain english:
Marginal pdf ignores the values of the other variable(s)
Conditional pdf fix the value of the other variable(s)
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Correlated measurements

Example:
It you spend 42 hours each week at the university, the probability that at a

randomly chosen moment your head is at the university is 1/4.
Similarly, the probability that your feet are at the university is 1/4. [Metzger]

What is the probability that both your head and your feet are at the university 7
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Correlated measurements

Example:
It you spend 42 hours each week at the university, the probability that at a

randomly chosen moment your head is at the university is 1/4.
Similarly, the probability that your feet are at the university is 1/4. [Metzger]

What is the probability that both your head and your feet are at the university 7

1/4, not 1/16 ! The location of your head and your feet are highly correlated. ..
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Covariance

A way to quantity the dependence between two variables is given by the covariance

cov(r1,22) =< (x1— < 21 >) (T2— < T2 >) >=< 1123 > — < 1 >< T3 >

If the two variables are independent then <xixo> = <X1><X2> and
the covariance is zero

Some properties:
-cov(x,a) =0
- coV(X,X) = V(x)

Covariance matrix:
when you have N variables the covariance is a [NxN] symmetric real matrix
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Variance with two variables

The general formula for the variance of two random variables is:
Viaz + by] = a*V[x] + b°V[y] + 2abCov(z, y)

which, in case of uncorrelated variables becomes simply:
Vv (Z Xz) = > V(X3)
i=1 i=1
Correlation

The correlation coefficient (linear correlation) is obtained normalizing the covariance
by the standard deviation of the two variables

cov(xy, Ts)

P =V @)V (w2)

NB: contrary to the covariance, the correlation coefficient is dimensionless

Correlation matrix:
when you have N variables the covariance is a [NxN] symmetric real matrix with “1”
on the diagonal
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Sample covariance and correlation

Given a sample of size n: (x1,y1)... (Xn,yn), the sample covariance or empirical covariance

estimate of the covariance is
1

n—1

Y (wi—1)(yi — )

1
and the sample correlation or empirical correlation estimate of Pzy
Sz Sy

S:Uy —

The (linear) correlation coefficient tells how well a set of measurement of two variables
supports the hypothesis that the two are linearly dependent.

Exercise: Which one has the largest correlation ? positive / negative ?

NS

_xffﬁ. fgﬂﬁi ;%ﬂgf ?ﬁﬁﬁ'

(scatter plot)
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Sample covariance and correlation

Given a sample of size n (x1,y1)... (Xn,yn) the sample covariance or empirical covariance

estimate of the covariance is
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The (linear) correlation coefficient tells how well a set of measurement of two variables
supports the hypothesis that the two are linearly dependent.

Exercise: Which one has the largest correlation ? positive / negative ?
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(scatter plot)
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Sample covariance and correlation

Given a sample of size n (x1,y1)... (Xn,yn) the sample covariance or empirical covariance

estimate of the covariance is
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The (linear) correlation coefficient tells how well a set of measurement of two variables
supports the hypothesis that the two are linearly dependent.
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Sample covariance and correlation

Given a sample of size n (x1,y1)... (Xn,yn) the sample covariance or empirical covariance
estimate of the covariance is

oy = —— 3 (i — 2) (s — 7)

n—1

1
and the sample correlation or empirical correlation estimate of Pzy
Sz Sy

The (linear) correlation coefficient tells how well a set of measurement of two variables
supports the hypothesis that the two are linearly dependent.

Exercise: Which one has the largest correlation ? positive / negative ?

1 0.8 0.4 0
;fff Hﬂﬁn E E

0.4

N

(scatter plot)

1 1 1 -1 -1

-1
- . -
ye e —_— e T AN
* undefined (0/0) but not
very interesting, as y is
a constant for each
value of x
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Sample covariance and correlation

Exercise: Which one has the largest correlation ? positive / negative 7

o 0 0
;g i oy
1 —‘_l.-fﬂ?‘ﬂ } '?..i:'-.tm%“'! Jﬁ" ﬂ
AF Nt 3 ke o
¥ B e B

The linear correlation coefficient for all these samples is zero, but it doesn’'t mean that
the two variables are independent !
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Error propagation (x,y)

Suppose you have two variables: x and .
The uncertainty on a function of the two variables can be computed again from the
Taylor expansion:

fen~foow+(G) @ (g)  wow

% 0 0f 0
aj% — (8_£> ag—k(aij) —|—28—£8—]yc cov(x,y)

Which can be extended to several variables as

2(2) T (2) (L) e

J J k#j

2
9f
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Correlation is not causation

When looking at data, don't fool yourself !

“The first principle is that you must not fool yourself and
you are the easiest person to fool.”
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Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.

Mauro Donega - Severian Gvasaliya ETHZ

Total US Highway Fatality Rate

VP - Data Analysis Toolbox

16
1996 BZ w087
15.8
15.6
15.4
1908 ®
15.2
Sources:
15 1 U.S. NHTSA, DOT HS 810 780
U.S. Department of Agriculture 2000
14.8
200 250 300 350 400 450 500 550

Fresh Lemons Imported to USA from Mexico
(Metric Tons)

Fatality rates due to lightning in the US

Annual daatk raca asrmiloo

| [https://ourworldindata.org/]

15


https://ourworldindata.org/

Combinatorial calculus
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Combinatorial calculus

When talking about sequences of objects we call:
permutations if we care about the order
combinations if we don’t care about the order

‘ ‘ ‘ Rio 2016 - 100m : Bolt, Gatlin, DeGrasse

These are all different permutations but equivalent combinations
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Permutations with repetition

Pick r times from a set of n objects and put them back

each time. T

The number of possible permutations is —> TL

You always have all n objects to choose from — _

Example: Example: Example:
2 bit pick 4 times lock with 3 digits 0..9 Mastermind: 6 colored pegs,

4 holes

b (= [ = = === |lo|lo|lo|lo|lo|lo|o]|o

lo|lk|lo|lk|lo|lk|lo|r|lo|=|lo|lo|=|o
= |lo|lo|k|k|lo|lo|k|k|lolo-|-|lo|o
o b | = o |o|lo|o|k|k|m|-|lolo|o|e

24= 16 permutations 1038 = 1000 permutations 64= 1296 permutations
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Permutations without repetition

Pick r times from a set of n objects and don'’t put them back. n)

The number of possible permutations is —>
Every time you pick one you have one less to choose from. (n — 7“)!

Example: 4 picks in a deck of 52 cards

first pick choose from 52, second from 51, third from 50, fourth from 49
52- 51- 50- 49 = 52!/ (52-4)!
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Permutations without repetition

Example: 3 athletes, 3 podium positions = 3! = 6 permutations
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Combinations without repetition

Pick r times from a set of n objects and don’t put them back, n! 1 n
ignoring the order |1
The number of possible combinations is —> o (n —mr)lr! Y/

Every time you pick one you have one less to choose from,

and you need to divide by the number of ordered sequences r! (read "n pick r’)

Example: Lotto: 6 numbers extracted without putting them back from the set 1..90,
the order is irrelevant.

The chances towinare 1/(%) ~ 109

21
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Combinations with repetition

Pick r times from a set of n objects and put them back,

ignoring the order — ) !
The number of possible combinations is —> (?nJr—rl)'r'). ~ (n . )

r

Example: take n scoops of icecream. You can repeat them and the order is not important

Mauro Donega - Severian Gvasaliya ETHZ VP - Data Analysis Toolbox
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Combinations with repetition

Pick r times from a set of n objects and put them back ignoring the order.

Derivation:
start from an example: take 3 objects from a set of 5 (a,b,c,d,e)
e.g.aab, abc, ccc

Think about the sequences of objects as classes and put a separator in between them
aab—>aal|b]| || (thelastthree are empty classes correspondingtoc, d, €)
abc—>al|b|c]| |

ccc—> | |ccc |

We can also drop the letters and replace all symbols with “x”
eg:.aab—>aal|b| | | —>xx|x]| ||

The problem is now how many ways we can placer =3 “x"and n =5-1 =4/’

This is the same as the combination w/o repetition “ N pick R ”, where in this case
N =n-1+r (sumof all “|” and “x”)

R=r n—14r
r
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Discrete pdfs
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Bernoulli trials

A Bernoulli trial is an experiment with only two outcomes: 0/ 1, pass / fail, yes / no
and the success probability p (and failure probability g =1-p) is constant

The random variable is discrete and can take only the values r €{0,1}
The pdf is trivially the probability for an experiment to succeed or fall

f(rip)=p" ¢*7"

The first two moments are: h

Example: p =0.3

Entries 1000
- Mean 0.285

n=p - RMS 04514

Entries
-""al
(o]
[ ]

600/
V(r)=p(1—p) s00.
4001
300%—
200,

100
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Binomial distribution

Given n Bernoulli trials with success probability p, the binomial distribution gives the
probability to observe r successes and n-r failures (independently of the order).

The random variable is r €{0,n}, the probability for r successes (for Bernoulli trials n = 1)

P(r:n,p) = (7:) oL — )

The first two moments are:

<r>=Y._"_or-P(r)=np

V(r) =np(l —p)

Reproductive property: if X is binomially distributed as P(X;n,p) and Y is binomially
distributed as P(Y; m,p) then X+Y is binomially distributed as P(X+Y; n+m, p).
NB: p is the same for X and Y

Mauro Donega - Severian Gvasaliya ETHZ VP - Data Analysis Toolbox
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Binomial distribution

Example: a pixel detector has four layers and an efficiency per layer to detect
a charged particle of 99%. What is the probability to reconstruct a track with 2 or
3 or 4 hits ? and what is the probability to reconstruct a track with at least 3 hits ?

TN
r \\\
i o n=15 —— \\\\
160 //,/ | |- n=20 N \\\ \\\
,,’// : ,,‘—”/ \\\‘\ \\J\ “\\
109 mm ,/,"/ f ,/”’// ‘ \\ \\\ \ \
,,/’/ J,,/’f, | 4+ n=25 y \ I |\
68 mum [ e e L AR
Pl B S )
30 mm —= J::, f _:.;- —— = /// /
T - » /
= > e
IF 291 mm 396 mm 516mm Z - //
d
= r-®
P(r = 2: n = 4, p=0.99) = 0.00 (0.0006)
P(r = 3: n = 4, p=0.99) = 0.038
P(r=4: n =4, p=0.99) = 0.96

P(r>2;n =4, p=0.88) = sum of the above > 99%
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Multinomial distribution

We can generalize the binomial distribution by considering k-types of outcomes
instead of only 0/ 1. (Think about a measurement giving you the k-th bin in an
histogram). Assume we have ri measurements of type i with i€{0,k} (number of entries
in bin i) with the total number of measurements n = ri+ro+...+rx and probability pi for

each type of outcome (probability to enter in bin i).
The multinomial pdf is :

nl
P(’rla"'ark;n?pl)"')pk) — (Tl' frk')p?lnl'"pk

The first two moments are:
< Ty >= np;

V(r:) = np;(1 —p;) i

Example: the multinomial distribution describes the
probability to have r; entries in bin i for
an histogram with n bins

n = 100
p=1[01,02 05,03, 0.1]
r =[10, 15, 55, 35, 10]
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Multinomial distribution

The covariance Is:

cov(r;, T5) = —NPiD;

and the correlation coefficient:

Pij —

cov(ri,rj) [ pi D

00 I —pi1—py
NB: the correlation among bins comes from the fact that the total number of entries
N=r{+...+rcisfixed, l.e.ri=n-r1-...-r1-rig1- ... - e

If nis not fixed, i.e. n is another random variable, the bin entries are uncorrelated and
instead of having a multinomial we will have a Poisson for each bin.

Mauro Donega - Severian Gvasaliya ETHZ VP - Data Analysis Toolbox
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Poisson distribution

The Poisson distribution is used when we know the number of outcomes but we don't
know the number of trials. The probability to observe r events when we expect A is:

\e=A
r!

P(r;\) =

Example: with a radioactive source we measure the number of decays but we don't
have the total number of nuclei (or the non decayed nuclei)

The Poisson distribution can be obtained as the limit of the binomial distribution when
the number of independent trials is high, the success probability is small and constant
and their product is constant (average rate) pn = A (derivation on the next slide).

First two moments:

<r>=A
V(r) =N <— this is the origin of the n ++y/n uncertainty in counting experiments
The number of observed counts fluctuates around its mean with this s.d.

Reproductive property: it X is Poisson distributed as P(r; Ar) and Y is Poisson distributed
as P(s; A\s) then X+Y is Poisson distributed as P(r+s; Ar+As).

Example: number of muons from two different sources (e.g. pions and kaons decays)
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Poisson distribution

The distribution can be obtained as a limit of the binomial: let A be the probability to
observe a radioactive decay in a period T of time. Now divide the period T in n time

intervals AT = T'/n small enough that the probability to observe two decays in an interval
is negligible. The probability to observe a decay in AT is then \/n, while the probability to

observe r decays in the period T’ is given by the binomial probability to observe r events in
n trials each of which has a probability A/n.

Pend) o () ()T e

Under the assumption that n >> r then:

(= 1) =nn—1)(n—-2)...(n—r+1)~n' (2.1.17)
and
)\ n—r )\ n
(1 - _> - (1 - _) —e  for oo (2.1.18)
n n
and replacing this in the binomial expression in Eq. 2.1.16 we obtain the Poisson p.d.f:
N e A
P(r;X) = e, : (2.1.19)
7!
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Poisson distribution

mu=0.1

Some examples:

P(X=k)

—
™

mu=1

0.6

0.5

0.4

0.3

0.2

0.1

0.15¢

0.1r

0.05¢

mu=0.5

0 o 10 15
k

When A < 1 the most probable value of the distribution is O
When A is integer then both A=n and A=n-1 are equally probable
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Poisson distribution

Example: An historical example ! is the number of deadly horse accidents in the Prussian
army. The fatal incidents were registered over twenty years in ten different cavalry corps.
There was a total of 122 fatal incidents, and therefore the expectation value per corps per
year is given by A = 122/200 = 0.61. The probability that no soldier is killed per year and
corps is P(0;0.61) = e %01 .0.61°/0! = 0.5434. To get the total events (of no incidents) in
one year and per corps, we have to multiply with the number of observed cases (here 200),
which yields 200 - 0.5434 = 108.7. The total statistics of the Prussian cavalry is summarized
in Tab. 2.1.1, in agreement with the Poisson expectation. O

Fatal incidents per corps and year | Reported incidents | Poisson distribution
0 109 108.7
1 65 66.3
2 22 20.2
3 3 4.1
4 1 0.6

Table 2.1.1: The total statistics of deadly accidents of Prussian soldiers.

Mauro Donega - Severian Gvasaliya ETHZ VP - Data Analysis Toolbox
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Poisson distribution

The Poisson distribution is used to describe counting experiments, provided that the

assumption “number of trials is high, the success probability is small and constant” is
fulfilled.

Examples described by a Poisson distribution:
- number of interactions caused by an intense beam of particles on a thin target

- number of entries in an histogram for events taken in a given time period (integral
not fixed)

Examples not described by a Poisson distribution:

- decay of a small amount of radioactive material in a time interval comparable to its
lifetime

- number of interactions caused by an intense beam of particles on a thick target

34
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Poisson distribution

The Poisson p.d.f. requires that the events be independent.

Example: Consider the case of a counter with a dead time of 1 psec.
In this case for high fluxes, the number of particles detected in some time interval will

not be Poisson distributed because the detection of a particle is not independent of the
detection of other particles.

- If the particle flux is low, the chance of a second particle within the dead time is
small and it can be neglected —> Poisson distributed

- If the flux is high the dead time cannot be —> not Poisson distributed

Mauro Donega - Severian Gvasaliya ETHZ VP - Data Analysis Toolbox
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Continuous pdfs
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Uniform distribution

r

1 .
— ifa<z<b
The uniform pdf is fx) =4 8_‘1 A==

else.
- 4

The probability to obtain a random value between a and b is constant

First two moments: I

17

b e
1
T > = L bfada::§(a—|—b) 08
1 06|
V — - b— 2 ve
ar(e) = T(b—a)

02

095 0s 10

15 2.0 25 30 33

Example: what is the resolution of a single silicon strip detector of width 1 mm
You have a binary signal: it a charge particle hits the strip you have a signal, if it
misses the signal you don't. Take as resolution the 1/4/12 = 290 um.

Mauro Donega - Severian Gvasaliya ETHZ VP - Data Analysis Toolbox
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Gaussian distribution

The gaussian distribution is how you expect your measurements to be distributed when
they are affected by a large number of additive 'noise’ components.

. = 0,0-=0.2
f( ) 1 _% 091 [wiki] N E: 8:552;8 —
.CIJ’; IU;, O) — e 20 0.8 | [ n=-2,6"=05 ——
V 2To 0.7 }

0.6

The first two moments are: 0.5 |

0.4 F

[T 2Pz p,0)de = p

02 F

fj;o(x — ,U)2P(CE'; W, J)d:C — g2 01 |

0

Basic properties:

- symmetric about p The “standard distribution” G(u=0,0=1)

- O characterize the width can be obtained by changing variable
- inflection point happens atx = o

- the maximumisatx=p ; G(y, o) = 1A/2n 0 LT H N(O 1) _ 1 —22/2

€

- FWHM =2 0y/2In2 =2.3550 o or

Reproductive property: It X and Y are two independent r.v.’s distributed as f(x; y,, o,) and
f(y; u,, 0,) then Z = X+Y is distributed as f(z;y,,0,) with y, =p.+uy,and o,=0,+0,.

38
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Cumulative of the Gaussian

(I)(gj) — 1 /gj 6_(t_lu’>2/20'2dt
20 J —o0o
f(x) 45000
25000 | - Double sided tail probability
Single sided .| | P(jx- | < 10) =68.27%
tail probabilities ... | | P(x-p] < 20 ) = 95.45%
/ K P(|x- u | < 30) = 99.73%
O7.72% <% ' f / .
34.15% os} | 90% = P(|x- Y| £ 1.6450)
95% = P(|x- y| £ 1.9600)
0.6 | ' 9% = P(|x- | <2.5760)
median 50% 99.9% = P(|x- | < 3.2900)
15.87% °*t
2 . 28 O/O 0_0;(54%4 L v ‘1(() v \g v :’ v .
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Multidimensional Gaussian

Properties:
-(X) = Ux and «(y) = Iy
- V(x) = ox and V(y) = oy

Or in general with N correlated variables

. 1 L o o Tr1/» -
f(iU,/L,V) — (27T)N/2|V|1/2 eXp (_5('1‘ o lu)TV 1(37 - M))

& and [i are column vectors with the components
r-and /j’Tare the corresponding row vectors
V is the covariance matrix (|V | its the determinant )

Properties:

- Xi) = i

- V(xi) = Vii

- CoV(Xi,Xj)=Vijj

Mauro Donega - Severian Gvasaliya ETHZ VP - Data Analysis Toolbox
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Exponential distribution

Example: charge of a short-circuited capacitor

Example: unstable particle/nucleus lifetime

]_ t ]. ct
- —e T ct) = —e 7
fl)=ces | fe-_
t: proper decay time ct: proper decay length
Properties:
1 oo
(T) = —/ te tTdt = 1
T Jo
_ 2 :
Var(t) =7 linear
10 - - T r
—CT = 2
08 —_— cr=1
' 06 |
~k 04l
0.2}
0.0 . 1 . , —
0 1 2 3 < 5

Q = QueﬂU

where A = 1/(RC)

—_— T =2

- c=1

Proper decay time (length) of an unstable particle.
(the steepest the distribution the shorter the lifetime)
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LogNormal distribution

L 1 (nz—p)?/2?

If v obeys a normal distribution with g, then x = exp(y) obeys a log-normal distribution (y = In x)

Properties:
<x> = etzo)
Var(x) = 63(2/”+‘72)(<f3‘72 —1)

The log-normal distribution is used to model the
response of a system where the resolution

IS given by the product of the effect of several
sources (as opposed to the gaussian

where you have additive contributions)
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LogNormal distribution

Example Consider the signal of a photomultiplier (PMT), which converts light signals into
electric signals. Each photon hitting the photo-cathode emits an electron, which gets
accelerated by an electric field generated by an electrode (dynode) behind. The electron
hits the dynode and emits other secondary electrons which gets accelerated to the next
dynode. This process if repeated several times (as many as the number of dynodes in the
PMT). At every stage the number of secondary electrons emitted depends on the voltage
applied.

Photocathode
Focusing electrode  Photomultiplier Tube (PMT)
lonization track /

| )

High energy | " 4 &, \

I

photon

Low energy'“photons

/

| ’ \ /
Scintillator Primary Secondary Dynode  Anode
electron electrons

Connector
pins

If the amplification per step is ai, then the number of electrons after the kth step,
ng = I1¥_,a; is approximately log-normal distributed.

43
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X2 (chi-squared) distribution
The chi-squared pdf is the joint probability of the product of n gaussians
H \/% _% (%;Mz)

oo ——z(*’“ ) ﬁ —

f(x;p,0)

n 2
. 2 . L — g as the chi-squared variable
We define ' x*(n) = z; ( o; ) with n-degrees of freedom
1=

The pdf is: (XQ)"/Z_le_X2/2

I'(n/2)2n/2

X’(n) = f(x*in) =

This will be particularly relevant when discussing least-squares fits
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X2 (chi-squared) distribution

o ) [Wiki]
Jelr ]“ \i -
0.9- - l'::‘)
| 0.4+ T ":3
Properties: — k=4
03l — k=6
- mean=n ’ — k=9
- variance = 2n 0.9
- mode=n-2 for n>2 and 0O for n<2
0.1

We define: x2(n)/n as reduced x2. (we will encounter this when talking about goodness of fit)

For n = o, x2(n) = Gaussian(x2;n,2n)

Typically we can approximate the x2 distribution to a gaussian for n > 30.
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Student’s t-distribution

The Student’s t distribution can be used to estimate the mean of a normally distributed parent
distribution when the sample size is small and parent distribution standard deviation is
unknown and the one evaluated from the sample s is used.

Take n samples from a gaussian parent and compute:

- 1 n . \ 1 n _
mean X = - ZXi variance S5°=-— ZI(Xi ~ X)?
1—1 =
| X —p
the random variable
7/Vn rwiki
IS gaussian distributed with mean O and variance 1. 0.40 '
0.35
X 0.30
X —
the random variable H S 0%
S/\/ﬁ Z0.20
0.15}
has a student’s distribution with n-1 degrees of freedom 2;2

0.00
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Cauchy / Lorentz / Breit-Wigner

(23 20,7) = | —L]
Ly, 7Y) — > — ( ~ 5 5 0.7 ' . . . .
my |1+ (x_zo) i (:v :1:0) 7 _ x, =0, y=0.5
’ | — 2, =0, y=1 |
. . . Lg —U, Y —
Or as standard Cauchy distribution:
1 1

Nor the mean nor the variance are defined !
(divergent integrals)

In HEP is usually written as (Breit-Wigner):

1 I
21 (m — M)? 4+ (I'/2)?

f(m; M,T) =

which is used to describe the cross section near a resonance of mass M and width I.
The Breit-Wigner is the Fourier transform of the wave function of an unstable particle:

w(t) x e—z’Eit/he—I‘t/2

)
(w —wo—i-ig)

which squares gives: |d(w)|* =

P(w) /0 T p(t)etdt =

(w —w())2 -+ %2
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Cauchy / Lorentz / Breit-Wigner

Compared to a gaussian:

.
~
—
-
e
-
-
L
-
- —
-

0.7 Ll Ll Ll L) Ll

= 0,y=05 —— =0,60=02 ——
02 0T= 10 09 | Ay S
06 %= 2= - -
' x=0y=20 —— p=0,0,=50 —
x=-2y=10 0.8 p=-2,06"=05 — -
0.5 F 1 0.7
04 { 0¢
0.5
03 * / /N 1 04
) | 0.2
0.1 F -
0.1
0 — 1 1 I I I - T E— — O
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Landau distribution

Used to describe the distribution of the energy
loss of a charged particle (by ionisation)
passing through a thin layer of matter.

1 c+100 §
p(r) = — / exp(slogs + xs)ds (c>0) <
211 C—100

Conveniently approximated by

X = E - Emp
Emp = most probable energy deposited

[PDG: passage of particles through matter]

A/x (MeV g1 em?)

1.0~

0.8~

04

0.2

0.0 Lo

0.50

1.00 1.50 2.00 2.50

500 MeV pion in silicon

————— 320 um (74.7 mg/cm?)

normalized to unity

Mean energy
loss rate

640 um (149 mg/em?) 1

~~— - 160 um (37.4 mg/em?) -
............... 80 um (18.7 mg/em?) |

100

300 400 500
A/x (eV/um)

The long tail towards large energies models the large energy loss fluctuations in thin layers.
The mean and the variance of the distribution are not defined.
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[Metzger]
Binomial p— 0 Poisson
B(k; N, p) Np = = const. P(k; p)
Wﬁ %@
Multinomial
M(k;p,N) : Normal . Student’s ¢
k, p of N — o0 N(z; p,0° N — o0 [ N)
dimension m
/ w
2 — OO0
N — o0
5 =1 F'-distribution exact
X (N) V9 _} 0.0 f(F: U, VZ)
limit
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Backup
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F distribution

Xi/v1
The F-distribution describes the ratio between two random F = 1
variables X%, and x“2, distributed as a x2 with v, and v, degrees of X% /VQ
freedom.

The corresponding pdf is:

niy/2 —(n1+n2)/2
ni\ T P 4+12)/2)  Lni—2)/2 n
f(F) <n2) T'(n1/2)T(n2/2) o . [wiki]
| dl=1. d2=]1 =——
A1=2, (2=] —
2 r d1=5, d2=2 m—

d1=10, d2=1

L5 d1=100, d2=100

We will encounter this distribution when discussing
the hypothesis test for the variance of two samples. 1
F can be re-written as the ratio of two variances (where

for convenience the largest one is at the numerator F>1). 05
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Random walk

Example: taken form Feynman Lectures on Physics Ch. 6 Vol 1

notebook https://gitlab.ethz.ch/mdonega/STAMET_ES18/blob/master/notebooks/randomWalk.ipynb
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