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Learning goals of the week: 
- How to use the covariance matrix: “Error Matrix” 
- Statistical Inference 
- Fitting: Least Squares method
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Error matrix
(often the covariance matrix is called error matrix) 

Take two uncorrelated measurements: e.g. a 2D pdf built form two uncorrelated gaussian: 
(centred at zero without loss of generality) 

44 CHAPTER 3. MEASUREMENTS UNCERTAINTIES

In this case the individual results are weighted such that the values with small uncertainties
contribute more to the average.
Some comments:

• The weighted mean collapses to the arithmetic mean when fixing all the uncertainty’s
to be equal

• “Few measurements with small uncertainties are better than many measurements with
large uncertainties”. Let the uncertainty of a first set of n1 measurements of the quantity
x be �1. The uncertainty on the mean is �x̄ = �1/

p
n1. If we have a second set of n2

measurements with uncertainty �2 and �2 > �1 then to get to the same precision you

need to collect more data as: n2 = n1

⇣
�2
�1

⌘2

• Care must be taken if the individual results and their uncertainty’s deviate too much
from each other. Consider the following example: An experiment measures in one hour
100± 10 events, and another experiment measures in one hour only 1± 1 events. The
Eq. 3.4.22 would then tell us that we have 2 ± 1 events. But the (unweighted) mean
would give 50.5±5. In this case instead of blindly quote the mean or the weighted mean
you should go back and understand why you get such di↵erent outcomes (it might be
a problem of some parameters of the data taking, some faulty equipment, some trivial
mistake etc...). In case you can’t find any reason for that, it would be wise to give the
full information at hand and preset both results

Example Compute the best estimate of the Higgs mass from the ATLAS ( mH = 125.36±
0.41 GeV) [26] and CMS (mH = 125.02 ± 0.30 GeV) [27]. Applying the formula for the
weighted average we get: mH = 125.14 ± 0.24 GeV. Compare it with the o�cial LHC com-
bination. 2

3.5 A closer look at the error matrix

We have encountered in the previous sections the error matrix (also called covariance matrix).
Here we will take a closer look at it, focusing on the importance of the o↵-diagonal terms
describing the correlations.

Let’s start from the case of a 2D probability density function built from two uncorrelated
gaussian distributions in x and y. The two p.d.f.’s are:

P (x) =
1p
2⇡

1
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e
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2
x
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�
2
x (3.5.24)

P (y) =
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(for simplicity we take the two distributions to be centred at 0) and the combined 2D uncor-
related distribution is just the product of the two:

P (x, y) =
1
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(3.5.26)
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The ±1σ error bar in one dimension becomes a 1σ ellipse in 2D:
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In one dimension the gaussian probability is reduced by 1/
p
e when moving away from the

maximum by 1�. In 2D this point becomes a curve and in this particular example an ellipse
with equation:

x
2

�2
x

+
y
2

�2
y

= 1 (3.5.27)

We can rewrite the same equation in matrix form (in the case of no correlation is an overkill
but this notation will become useful in the following):

(x, y)

 
1
�2
x

0

0 1
�2
y

!✓
x

y

◆
= 1 (3.5.28)

The matrix in the previous equation is called the inverse of the error matrix and its inverse
is called error matrix for x and y:

✓
�
2
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2
y

◆
(3.5.29)

The general element of the error(covariance) matrix for n variables x1, . . . , xn is given by:

h(xi � x̄i)(xj � x̄j)i. (3.5.30)

The notation above allows to treat in a simple way the case of correlated variables.
Take the previous uncorrelated case and rotate the (x, y) axes as :

x
0 = x cos ✓ � y sin ✓ (3.5.31)

y
0 = x sin ✓ + y cos ✓ (3.5.32)

Let’s use a numerical example: be �x = 1/4 and �y = 1/2 (see Fig. 3.5.1) Then the uncorre-
lated case reads:

16x2 + 4y2 = 1. (3.5.33)

Applying the rotation (i.e. correlating the two measurements see Fig. 3.5.1):
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(3.5.34)

we get
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The matrix in the centre is the “inverse error matrix” and its inverse is the “error matrix”:

1
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✓
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p
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�3
p
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◆
(3.5.36)

Given the error matrix is trivial to extract uncertainties on the variables and their correlation
coe�cients:
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Inverse of the error matrix

Error matrix = in general 
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14 CHAPTER 1. PROBABILITY

If two variables are independent then < x1x2 >=< x1 >< x2 > and so the covariance is zero.
Knowing the covariance between two variables we can write the expression of the variance of
their sum:

V (x1 + x2) = V (x1) + V (x2) + 2⇥ cov(x1, x2). (1.14.40)

Some more properties of the covariance are:

• cov(x, x) = V (x)

• cov(x, y) is translation invariant (shift origin)

• cov(x, y) has units !

The correlation coe�cient between x1 and x2 is defined as:

⇢x1x2 =
cov(x1, x2)p
V (x1)V (x2)

(1.14.41)

The correlation coe�cient is the covariance normalized by the variances to get a value between
+1 and -1. Scatter plots for di↵erent correlation coe�cients ⇢ are shown in Fig. 1.14.3. If
two variables are independent, given that their covariance is zero, also ⇢x1x2 = 0. The inverse
is not necessarily true. This means that ⇢x1x2 = 0 can hold but x1 and x2 can nevertheless
be dependent, as illustrated by the following examples:

Figure 1.14.3: Some examples for correlation coe�cients ⇢. [3]. Note in particular the second
raw where the correlation coe�cient is not defined for the horizontal line because one of the
variables has null variance; and the third raw, where the correlation coe�cient is always zero.

Given a sample of size n ((x1, y1), (x2, y2), . . . , (xn, yn)), the sample covariance or empirical
covariance sxy, which is the best estimate for the (true) covariance sxy is given by:

sxy =
1

n� 1

X

i

(xi � x̄)(yi � ȳ). (1.14.42)

And from here the correlation coefficient: 

[Lyons]
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Figure 3.5.1: Interpretation of the uncertainty for two variables: the error ellipse.

• the uncertainty on x
0 is given by intersection of the rectangle inscribing the ellipse with

the x-axis: �2
x0 = 7/64 the square root of the first diagonal element of the error matrix

• the uncertainty on y
0 is given by intersection of the rectangle inscribing the ellipse with

the y-axis: �
2
y0 = 13/64 the square root of the second diagonal element of the error

matrix

• the intersection of the ellipse with the x-axis is
p
1/13 = 0.277 the inverse of the square

root of the first diagonal element of the inverse error matrix

• the intersection of the ellipse with the y-axis is
p
1/7 = 0.378 the inverse of the square

root of the second diagonal element of the inverse error matrix

• the o↵-diagonal elements of the error-matrix are ⇢�x0�y0 ; knowing �x0 and �y0 from the
diagonal elements we obtain a correlation coe�cient ⇢ = 0.54.

• the semi-axes of the ellipse are the square roots of the eigenvalues of the error matrix
(here we know the diagonalized matrix, i.e. before rotation, and we can just read them
o↵: 0.25, 0.5)

3.6 Statistical vs. Systematic Uncertainties

When repeating measurements (for example to reduce the uncertainty by averaging over
many results), the usual assumption is that the experiments can be repeated under identical
conditions, being independent of each other and thus giving identical, independent results.
Unfortunately, this ideal world does not exist. Repeated measurements will give slightly

4

Error matrix
The matrix notation allows to easily treat the case of correlated variables. 
Build a correlation between the two variables by simply rotate the axes (by 30o)
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The matrix in the centre is the “inverse error matrix” and its inverse is the “error matrix”:
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Given the error matrix is trivial to extract uncertainties on the variables and their correlation
coe�cients:

Let’s use a numerical example to get the idea: 

Suppose the ellipse for the uncorrelated case is: 

After rotation we have: 
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The notation above allows to treat in a simple way the case of correlated variables.
Take the previous uncorrelated case and rotate the (x, y) axes as :

x
0 = x cos ✓ � y sin ✓ (3.5.31)

y
0 = x sin ✓ + y cos ✓ (3.5.32)

Let’s use a numerical example: be �x = 1/4 and �y = 1/2 (see Fig. 3.5.1) Then the uncorre-
lated case reads:

16x2 + 4y2 = 1. (3.5.33)

Applying the rotation (i.e. correlating the two measurements see Fig. 3.5.1):
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The matrix in the centre is the “inverse error matrix” and its inverse is the “error matrix”:
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Given the error matrix is trivial to extract uncertainties on the variables and their correlation
coe�cients:
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but this notation will become useful in the following):

(x, y)

 
1
�2
x

0

0 1
�2
y

!✓
x

y

◆
= 1 (3.5.28)

The matrix in the previous equation is called the inverse of the error matrix and its inverse
is called error matrix for x and y:

✓
�
2
x 0
0 �

2
y

◆
(3.5.29)

The general element of the error(covariance) matrix for n variables x1, . . . , xn is given by:

h(xi � x̄i)(xj � x̄j)i. (3.5.30)

The notation above allows to treat in a simple way the case of correlated variables.
Take the previous uncorrelated case and rotate the (x, y) axes as :

x
0 = x cos ✓ � y sin ✓ (3.5.31)

y
0 = x sin ✓ + y cos ✓ (3.5.32)

Let’s use a numerical example: be �x = 1/4 and �y = 1/2 (see Fig. 3.5.1) Then the uncorre-
lated case reads:

16x2 + 4y2 = 1. (3.5.33)

Applying the rotation (i.e. correlating the two measurements see Fig. 3.5.1):

(x y)0
✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆✓
1/�2

x 0
0 1/�2

y

◆✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
x

y

◆0
(3.5.34)

we get

(x y)0
✓

13 3
p
3

3
p
3 7

◆✓
x

y

◆0
. (3.5.35)

The matrix in the centre is the “inverse error matrix” and its inverse is the “error matrix”:

1

64

✓
7 �3

p
3

�3
p
3 13

◆
(3.5.36)

Given the error matrix is trivial to extract uncertainties on the variables and their correlation
coe�cients:

3.5. A CLOSER LOOK AT THE ERROR MATRIX 45

In one dimension the gaussian probability is reduced by 1/
p
e when moving away from the

maximum by 1�. In 2D this point becomes a curve and in this particular example an ellipse
with equation:

x
2

�2
x

+
y
2

�2
y

= 1 (3.5.27)

We can rewrite the same equation in matrix form (in the case of no correlation is an overkill
but this notation will become useful in the following):

(x, y)

 
1
�2
x

0

0 1
�2
y

!✓
x

y

◆
= 1 (3.5.28)

The matrix in the previous equation is called the inverse of the error matrix and its inverse
is called error matrix for x and y:

✓
�
2
x 0
0 �

2
y

◆
(3.5.29)

The general element of the error(covariance) matrix for n variables x1, . . . , xn is given by:

h(xi � x̄i)(xj � x̄j)i. (3.5.30)

The notation above allows to treat in a simple way the case of correlated variables.
Take the previous uncorrelated case and rotate the (x, y) axes as :

x
0 = x cos ✓ � y sin ✓ (3.5.31)

y
0 = x sin ✓ + y cos ✓ (3.5.32)

Let’s use a numerical example: be �x = 1/4 and �y = 1/2 (see Fig. 3.5.1) Then the uncorre-
lated case reads:

16x2 + 4y2 = 1. (3.5.33)

Applying the rotation (i.e. correlating the two measurements see Fig. 3.5.1):

(x y)0
✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆✓
1/�2

x 0
0 1/�2

y

◆✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
x

y

◆0
(3.5.34)

we get

(x y)0
✓

13 3
p
3

3
p
3 7

◆✓
x

y

◆0
. (3.5.35)

The matrix in the centre is the “inverse error matrix” and its inverse is the “error matrix”:

1

64

✓
7 �3

p
3

�3
p
3 13

◆
(3.5.36)

Given the error matrix is trivial to extract uncertainties on the variables and their correlation
coe�cients:

and Error Matrix:



Mauro Donegà - Severian Gvasaliya ETHZ                                                              VP - Data Analysis Toolbox

46 CHAPTER 3. MEASUREMENTS UNCERTAINTIES

Figure 3.5.1: Interpretation of the uncertainty for two variables: the error ellipse.

• the uncertainty on x
0 is given by intersection of the rectangle inscribing the ellipse with

the x-axis: �2
x0 = 7/64 the square root of the first diagonal element of the error matrix

• the uncertainty on y
0 is given by intersection of the rectangle inscribing the ellipse with

the y-axis: �
2
y0 = 13/64 the square root of the second diagonal element of the error

matrix

• the intersection of the ellipse with the x-axis is
p
1/13 = 0.277 the inverse of the square

root of the first diagonal element of the inverse error matrix

• the intersection of the ellipse with the y-axis is
p
1/7 = 0.378 the inverse of the square

root of the second diagonal element of the inverse error matrix

• the o↵-diagonal elements of the error-matrix are ⇢�x0�y0 ; knowing �x0 and �y0 from the
diagonal elements we obtain a correlation coe�cient ⇢ = 0.54.

• the semi-axes of the ellipse are the square roots of the eigenvalues of the error matrix
(here we know the diagonalized matrix, i.e. before rotation, and we can just read them
o↵: 0.25, 0.5)

3.6 Statistical vs. Systematic Uncertainties

When repeating measurements (for example to reduce the uncertainty by averaging over
many results), the usual assumption is that the experiments can be repeated under identical
conditions, being independent of each other and thus giving identical, independent results.
Unfortunately, this ideal world does not exist. Repeated measurements will give slightly
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Given the error matrix is trivial to extract uncertainties on the variables and their correlation
coe�cients:
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Figure 3.5.1: Interpretation of the uncertainty for two variables: the error ellipse.

• the uncertainty on x
0 is given by intersection of the rectangle inscribing the ellipse with

the x-axis: �2
x0 = 7/64 the square root of the first diagonal element of the error matrix

• the uncertainty on y
0 is given by intersection of the rectangle inscribing the ellipse with

the y-axis: �
2
y0 = 13/64 the square root of the second diagonal element of the error

matrix

• the intersection of the ellipse with the x-axis is
p
1/13 = 0.277 the inverse of the square

root of the first diagonal element of the inverse error matrix

• the intersection of the ellipse with the y-axis is
p
1/7 = 0.378 the inverse of the square

root of the second diagonal element of the inverse error matrix

• the o↵-diagonal elements of the error-matrix are ⇢�x0�y0 ; knowing �x0 and �y0 from the
diagonal elements we obtain a correlation coe�cient ⇢ = 0.54.

• the semi-axes of the ellipse are the square roots of the eigenvalues of the error matrix
(here we know the diagonalized matrix, i.e. before rotation, and we can just read them
o↵: 0.25, 0.5)

3.6 Statistical vs. Systematic Uncertainties

When repeating measurements (for example to reduce the uncertainty by averaging over
many results), the usual assumption is that the experiments can be repeated under identical
conditions, being independent of each other and thus giving identical, independent results.
Unfortunately, this ideal world does not exist. Repeated measurements will give slightly

What is the meaning of the elements 
of the error matrix ?
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Figure 3.5.1: Interpretation of the uncertainty for two variables: the error ellipse.
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• the o↵-diagonal elements of the error-matrix are ⇢�x0�y0 ; knowing �x0 and �y0 from the
diagonal elements we obtain a correlation coe�cient ⇢ = 0.54.

• the semi-axes of the ellipse are the square roots of the eigenvalues of the error matrix
(here we know the diagonalized matrix, i.e. before rotation, and we can just read them
o↵: 0.25, 0.5)

3.6 Statistical vs. Systematic Uncertainties

When repeating measurements (for example to reduce the uncertainty by averaging over
many results), the usual assumption is that the experiments can be repeated under identical
conditions, being independent of each other and thus giving identical, independent results.
Unfortunately, this ideal world does not exist. Repeated measurements will give slightly
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In one dimension the gaussian probability is reduced by 1/
p
e when moving away from the

maximum by 1�. In 2D this point becomes a curve and in this particular example an ellipse
with equation:
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We can rewrite the same equation in matrix form (in the case of no correlation is an overkill
but this notation will become useful in the following):
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The matrix in the previous equation is called the inverse of the error matrix and its inverse
is called error matrix for x and y:
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The general element of the error(covariance) matrix for n variables x1, . . . , xn is given by:

h(xi � x̄i)(xj � x̄j)i. (3.5.30)

The notation above allows to treat in a simple way the case of correlated variables.
Take the previous uncorrelated case and rotate the (x, y) axes as :

x
0 = x cos ✓ � y sin ✓ (3.5.31)

y
0 = x sin ✓ + y cos ✓ (3.5.32)

Let’s use a numerical example: be �x = 1/4 and �y = 1/2 (see Fig. 3.5.1) Then the uncorre-
lated case reads:

16x2 + 4y2 = 1. (3.5.33)

Applying the rotation (i.e. correlating the two measurements see Fig. 3.5.1):
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The matrix in the centre is the “inverse error matrix” and its inverse is the “error matrix”:
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Given the error matrix is trivial to extract uncertainties on the variables and their correlation
coe�cients:
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Figure 3.5.1: Interpretation of the uncertainty for two variables: the error ellipse.

• the uncertainty on x
0 is given by intersection of the rectangle inscribing the ellipse with

the x-axis: �2
x0 = 7/64 the square root of the first diagonal element of the error matrix

• the uncertainty on y
0 is given by intersection of the rectangle inscribing the ellipse with

the y-axis: �
2
y0 = 13/64 the square root of the second diagonal element of the error

matrix

• the intersection of the ellipse with the x-axis is
p
1/13 = 0.277 the inverse of the square

root of the first diagonal element of the inverse error matrix

• the intersection of the ellipse with the y-axis is
p
1/7 = 0.378 the inverse of the square

root of the second diagonal element of the inverse error matrix

• the o↵-diagonal elements of the error-matrix are ⇢�x0�y0 ; knowing �x0 and �y0 from the
diagonal elements we obtain a correlation coe�cient ⇢ = 0.54.

• the semi-axes of the ellipse are the square roots of the eigenvalues of the error matrix
(here we know the diagonalized matrix, i.e. before rotation, and we can just read them
o↵: 0.25, 0.5)

3.6 Statistical vs. Systematic Uncertainties

When repeating measurements (for example to reduce the uncertainty by averaging over
many results), the usual assumption is that the experiments can be repeated under identical
conditions, being independent of each other and thus giving identical, independent results.
Unfortunately, this ideal world does not exist. Repeated measurements will give slightly
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Figure 3.5.1: Interpretation of the uncertainty for two variables: the error ellipse.

• the uncertainty on x
0 is given by intersection of the rectangle inscribing the ellipse with

the x-axis: �2
x0 = 7/64 the square root of the first diagonal element of the error matrix

• the uncertainty on y
0 is given by intersection of the rectangle inscribing the ellipse with

the y-axis: �
2
y0 = 13/64 the square root of the second diagonal element of the error

matrix

• the intersection of the ellipse with the x-axis is
p
1/13 = 0.277 the inverse of the square

root of the first diagonal element of the inverse error matrix

• the intersection of the ellipse with the y-axis is
p
1/7 = 0.378 the inverse of the square

root of the second diagonal element of the inverse error matrix

• the o↵-diagonal elements of the error-matrix are ⇢�x0�y0 ; knowing �x0 and �y0 from the
diagonal elements we obtain a correlation coe�cient ⇢ = 0.54.

• the semi-axes of the ellipse are the square roots of the eigenvalues of the error matrix
(here we know the diagonalized matrix, i.e. before rotation, and we can just read them
o↵: 0.25, 0.5)

3.6 Statistical vs. Systematic Uncertainties

When repeating measurements (for example to reduce the uncertainty by averaging over
many results), the usual assumption is that the experiments can be repeated under identical
conditions, being independent of each other and thus giving identical, independent results.
Unfortunately, this ideal world does not exist. Repeated measurements will give slightly
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In one dimension the gaussian probability is reduced by 1/
p
e when moving away from the

maximum by 1�. In 2D this point becomes a curve and in this particular example an ellipse
with equation:
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We can rewrite the same equation in matrix form (in the case of no correlation is an overkill
but this notation will become useful in the following):
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= 1 (3.5.28)

The matrix in the previous equation is called the inverse of the error matrix and its inverse
is called error matrix for x and y:
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The general element of the error(covariance) matrix for n variables x1, . . . , xn is given by:

h(xi � x̄i)(xj � x̄j)i. (3.5.30)

The notation above allows to treat in a simple way the case of correlated variables.
Take the previous uncorrelated case and rotate the (x, y) axes as :

x
0 = x cos ✓ � y sin ✓ (3.5.31)

y
0 = x sin ✓ + y cos ✓ (3.5.32)

Let’s use a numerical example: be �x = 1/4 and �y = 1/2 (see Fig. 3.5.1) Then the uncorre-
lated case reads:

16x2 + 4y2 = 1. (3.5.33)

Applying the rotation (i.e. correlating the two measurements see Fig. 3.5.1):
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we get
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The matrix in the centre is the “inverse error matrix” and its inverse is the “error matrix”:
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Given the error matrix is trivial to extract uncertainties on the variables and their correlation
coe�cients:
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Figure 3.5.1: Interpretation of the uncertainty for two variables: the error ellipse.

• the uncertainty on x
0 is given by intersection of the rectangle inscribing the ellipse with

the x-axis: �2
x0 = 7/64 the square root of the first diagonal element of the error matrix

• the uncertainty on y
0 is given by intersection of the rectangle inscribing the ellipse with

the y-axis: �
2
y0 = 13/64 the square root of the second diagonal element of the error

matrix

• the intersection of the ellipse with the x-axis is
p
1/13 = 0.277 the inverse of the square

root of the first diagonal element of the inverse error matrix

• the intersection of the ellipse with the y-axis is
p
1/7 = 0.378 the inverse of the square

root of the second diagonal element of the inverse error matrix

• the o↵-diagonal elements of the error-matrix are ⇢�x0�y0 ; knowing �x0 and �y0 from the
diagonal elements we obtain a correlation coe�cient ⇢ = 0.54.

• the semi-axes of the ellipse are the square roots of the eigenvalues of the error matrix
(here we know the diagonalized matrix, i.e. before rotation, and we can just read them
o↵: 0.25, 0.5)

3.6 Statistical vs. Systematic Uncertainties

When repeating measurements (for example to reduce the uncertainty by averaging over
many results), the usual assumption is that the experiments can be repeated under identical
conditions, being independent of each other and thus giving identical, independent results.
Unfortunately, this ideal world does not exist. Repeated measurements will give slightly
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• the o↵-diagonal elements of the error-matrix are ⇢�x0�y0 ; knowing �x0 and �y0 from the
diagonal elements we obtain a correlation coe�cient ⇢ = 0.54.

• the semi-axes of the ellipse are the square roots of the eigenvalues of the error matrix
(here we know the diagonalized matrix, i.e. before rotation, and we can just read them
o↵: 0.25, 0.5)

3.6 Statistical vs. Systematic Uncertainties

When repeating measurements (for example to reduce the uncertainty by averaging over
many results), the usual assumption is that the experiments can be repeated under identical
conditions, being independent of each other and thus giving identical, independent results.
Unfortunately, this ideal world does not exist. Repeated measurements will give slightly

Knowing σx′ and σy′ from  
the diagonal elements we have

What is the meaning of the elements 
of the error matrix ?
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Figure 3.5.1: Interpretation of the uncertainty for two variables: the error ellipse.

• the uncertainty on x
0 is given by intersection of the rectangle inscribing the ellipse with

the x-axis: �2
x0 = 7/64 the square root of the first diagonal element of the error matrix

• the uncertainty on y
0 is given by intersection of the rectangle inscribing the ellipse with

the y-axis: �
2
y0 = 13/64 the square root of the second diagonal element of the error

matrix

• the intersection of the ellipse with the x-axis is
p
1/13 = 0.277 the inverse of the square

root of the first diagonal element of the inverse error matrix

• the intersection of the ellipse with the y-axis is
p
1/7 = 0.378 the inverse of the square

root of the second diagonal element of the inverse error matrix

• the o↵-diagonal elements of the error-matrix are ⇢�x0�y0 ; knowing �x0 and �y0 from the
diagonal elements we obtain a correlation coe�cient ⇢ = 0.54.

• the semi-axes of the ellipse are the square roots of the eigenvalues of the error matrix
(here we know the diagonalized matrix, i.e. before rotation, and we can just read them
o↵: 0.25, 0.5)

3.6 Statistical vs. Systematic Uncertainties

When repeating measurements (for example to reduce the uncertainty by averaging over
many results), the usual assumption is that the experiments can be repeated under identical
conditions, being independent of each other and thus giving identical, independent results.
Unfortunately, this ideal world does not exist. Repeated measurements will give slightly
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In one dimension the gaussian probability is reduced by 1/
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maximum by 1�. In 2D this point becomes a curve and in this particular example an ellipse
with equation:
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We can rewrite the same equation in matrix form (in the case of no correlation is an overkill
but this notation will become useful in the following):
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The matrix in the previous equation is called the inverse of the error matrix and its inverse
is called error matrix for x and y:
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The general element of the error(covariance) matrix for n variables x1, . . . , xn is given by:

h(xi � x̄i)(xj � x̄j)i. (3.5.30)

The notation above allows to treat in a simple way the case of correlated variables.
Take the previous uncorrelated case and rotate the (x, y) axes as :

x
0 = x cos ✓ � y sin ✓ (3.5.31)

y
0 = x sin ✓ + y cos ✓ (3.5.32)

Let’s use a numerical example: be �x = 1/4 and �y = 1/2 (see Fig. 3.5.1) Then the uncorre-
lated case reads:

16x2 + 4y2 = 1. (3.5.33)

Applying the rotation (i.e. correlating the two measurements see Fig. 3.5.1):

(x y)0
✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆✓
1/�2

x 0
0 1/�2

y

◆✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
x

y

◆0
(3.5.34)

we get

(x y)0
✓

13 3
p
3

3
p
3 7

◆✓
x

y

◆0
. (3.5.35)

The matrix in the centre is the “inverse error matrix” and its inverse is the “error matrix”:

1

64

✓
7 �3

p
3

�3
p
3 13

◆
(3.5.36)

Given the error matrix is trivial to extract uncertainties on the variables and their correlation
coe�cients: The semi-axes of the ellipse are the 

square roots of the eigenvalues of the 
error matrix (here we know the 
diagonalized matrix, i.e. before 
rotation, and we can just read them off: 
0.25, 0.5)  

What is the meaning of the elements 
of the error matrix ?
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Figure 3.5.1: Interpretation of the uncertainty for two variables: the error ellipse.

• the uncertainty on x
0 is given by intersection of the rectangle inscribing the ellipse with

the x-axis: �2
x0 = 7/64 the square root of the first diagonal element of the error matrix

• the uncertainty on y
0 is given by intersection of the rectangle inscribing the ellipse with

the y-axis: �
2
y0 = 13/64 the square root of the second diagonal element of the error

matrix

• the intersection of the ellipse with the x-axis is
p
1/13 = 0.277 the inverse of the square

root of the first diagonal element of the inverse error matrix

• the intersection of the ellipse with the y-axis is
p
1/7 = 0.378 the inverse of the square

root of the second diagonal element of the inverse error matrix

• the o↵-diagonal elements of the error-matrix are ⇢�x0�y0 ; knowing �x0 and �y0 from the
diagonal elements we obtain a correlation coe�cient ⇢ = 0.54.

• the semi-axes of the ellipse are the square roots of the eigenvalues of the error matrix
(here we know the diagonalized matrix, i.e. before rotation, and we can just read them
o↵: 0.25, 0.5)

3.6 Statistical vs. Systematic Uncertainties

When repeating measurements (for example to reduce the uncertainty by averaging over
many results), the usual assumption is that the experiments can be repeated under identical
conditions, being independent of each other and thus giving identical, independent results.
Unfortunately, this ideal world does not exist. Repeated measurements will give slightly

9
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In one dimension the gaussian probability is reduced by 1/
p
e when moving away from the

maximum by 1�. In 2D this point becomes a curve and in this particular example an ellipse
with equation:

x
2

�2
x

+
y
2

�2
y

= 1 (3.5.27)

We can rewrite the same equation in matrix form (in the case of no correlation is an overkill
but this notation will become useful in the following):

(x, y)

 
1
�2
x

0

0 1
�2
y

!✓
x

y

◆
= 1 (3.5.28)

The matrix in the previous equation is called the inverse of the error matrix and its inverse
is called error matrix for x and y:
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2
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◆
(3.5.29)

The general element of the error(covariance) matrix for n variables x1, . . . , xn is given by:

h(xi � x̄i)(xj � x̄j)i. (3.5.30)

The notation above allows to treat in a simple way the case of correlated variables.
Take the previous uncorrelated case and rotate the (x, y) axes as :

x
0 = x cos ✓ � y sin ✓ (3.5.31)

y
0 = x sin ✓ + y cos ✓ (3.5.32)

Let’s use a numerical example: be �x = 1/4 and �y = 1/2 (see Fig. 3.5.1) Then the uncorre-
lated case reads:

16x2 + 4y2 = 1. (3.5.33)

Applying the rotation (i.e. correlating the two measurements see Fig. 3.5.1):

(x y)0
✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆✓
1/�2

x 0
0 1/�2

y

◆✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
x

y

◆0
(3.5.34)

we get
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The matrix in the centre is the “inverse error matrix” and its inverse is the “error matrix”:
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Given the error matrix is trivial to extract uncertainties on the variables and their correlation
coe�cients:
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Figure 3.5.1: Interpretation of the uncertainty for two variables: the error ellipse.

• the uncertainty on x
0 is given by intersection of the rectangle inscribing the ellipse with

the x-axis: �2
x0 = 7/64 the square root of the first diagonal element of the error matrix

• the uncertainty on y
0 is given by intersection of the rectangle inscribing the ellipse with

the y-axis: �
2
y0 = 13/64 the square root of the second diagonal element of the error

matrix

• the intersection of the ellipse with the x-axis is
p
1/13 = 0.277 the inverse of the square

root of the first diagonal element of the inverse error matrix

• the intersection of the ellipse with the y-axis is
p
1/7 = 0.378 the inverse of the square

root of the second diagonal element of the inverse error matrix

• the o↵-diagonal elements of the error-matrix are ⇢�x0�y0 ; knowing �x0 and �y0 from the
diagonal elements we obtain a correlation coe�cient ⇢ = 0.54.

• the semi-axes of the ellipse are the square roots of the eigenvalues of the error matrix
(here we know the diagonalized matrix, i.e. before rotation, and we can just read them
o↵: 0.25, 0.5)

3.6 Statistical vs. Systematic Uncertainties

When repeating measurements (for example to reduce the uncertainty by averaging over
many results), the usual assumption is that the experiments can be repeated under identical
conditions, being independent of each other and thus giving identical, independent results.
Unfortunately, this ideal world does not exist. Repeated measurements will give slightly

What is the meaning of the elements 
of the inverse error matrix ?
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Figure 3.5.1: Interpretation of the uncertainty for two variables: the error ellipse.

• the uncertainty on x
0 is given by intersection of the rectangle inscribing the ellipse with

the x-axis: �2
x0 = 7/64 the square root of the first diagonal element of the error matrix

• the uncertainty on y
0 is given by intersection of the rectangle inscribing the ellipse with

the y-axis: �
2
y0 = 13/64 the square root of the second diagonal element of the error

matrix

• the intersection of the ellipse with the x-axis is
p
1/13 = 0.277 the inverse of the square

root of the first diagonal element of the inverse error matrix

• the intersection of the ellipse with the y-axis is
p
1/7 = 0.378 the inverse of the square

root of the second diagonal element of the inverse error matrix

• the o↵-diagonal elements of the error-matrix are ⇢�x0�y0 ; knowing �x0 and �y0 from the
diagonal elements we obtain a correlation coe�cient ⇢ = 0.54.

• the semi-axes of the ellipse are the square roots of the eigenvalues of the error matrix
(here we know the diagonalized matrix, i.e. before rotation, and we can just read them
o↵: 0.25, 0.5)

3.6 Statistical vs. Systematic Uncertainties

When repeating measurements (for example to reduce the uncertainty by averaging over
many results), the usual assumption is that the experiments can be repeated under identical
conditions, being independent of each other and thus giving identical, independent results.
Unfortunately, this ideal world does not exist. Repeated measurements will give slightly
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In one dimension the gaussian probability is reduced by 1/
p
e when moving away from the

maximum by 1�. In 2D this point becomes a curve and in this particular example an ellipse
with equation:
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= 1 (3.5.27)

We can rewrite the same equation in matrix form (in the case of no correlation is an overkill
but this notation will become useful in the following):
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= 1 (3.5.28)

The matrix in the previous equation is called the inverse of the error matrix and its inverse
is called error matrix for x and y:
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The general element of the error(covariance) matrix for n variables x1, . . . , xn is given by:

h(xi � x̄i)(xj � x̄j)i. (3.5.30)

The notation above allows to treat in a simple way the case of correlated variables.
Take the previous uncorrelated case and rotate the (x, y) axes as :

x
0 = x cos ✓ � y sin ✓ (3.5.31)

y
0 = x sin ✓ + y cos ✓ (3.5.32)

Let’s use a numerical example: be �x = 1/4 and �y = 1/2 (see Fig. 3.5.1) Then the uncorre-
lated case reads:

16x2 + 4y2 = 1. (3.5.33)

Applying the rotation (i.e. correlating the two measurements see Fig. 3.5.1):
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we get
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The matrix in the centre is the “inverse error matrix” and its inverse is the “error matrix”:
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Given the error matrix is trivial to extract uncertainties on the variables and their correlation
coe�cients:
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Figure 3.5.1: Interpretation of the uncertainty for two variables: the error ellipse.

• the uncertainty on x
0 is given by intersection of the rectangle inscribing the ellipse with

the x-axis: �2
x0 = 7/64 the square root of the first diagonal element of the error matrix

• the uncertainty on y
0 is given by intersection of the rectangle inscribing the ellipse with

the y-axis: �
2
y0 = 13/64 the square root of the second diagonal element of the error

matrix

• the intersection of the ellipse with the x-axis is
p
1/13 = 0.277 the inverse of the square

root of the first diagonal element of the inverse error matrix

• the intersection of the ellipse with the y-axis is
p
1/7 = 0.378 the inverse of the square

root of the second diagonal element of the inverse error matrix

• the o↵-diagonal elements of the error-matrix are ⇢�x0�y0 ; knowing �x0 and �y0 from the
diagonal elements we obtain a correlation coe�cient ⇢ = 0.54.

• the semi-axes of the ellipse are the square roots of the eigenvalues of the error matrix
(here we know the diagonalized matrix, i.e. before rotation, and we can just read them
o↵: 0.25, 0.5)

3.6 Statistical vs. Systematic Uncertainties

When repeating measurements (for example to reduce the uncertainty by averaging over
many results), the usual assumption is that the experiments can be repeated under identical
conditions, being independent of each other and thus giving identical, independent results.
Unfortunately, this ideal world does not exist. Repeated measurements will give slightly

What is the meaning of the elements 
of the inverse error matrix ?
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Working with systematic uncertainties
The easiest way to work with systematic uncertainties when you have to work out the 
uncertainty on a function of several variables is to use the matrix notation:

3.7. WORK WITH SYSTEMATIC UNCERTAINTIES 47

di↵erent results, due to diverse sources such as changing experimental conditions (mostly
unknown), imprecise measurement (resolution), thermal or quantum fluctuations and others.
The di↵erences in the results are “randomly” varying, giving the so-called statistical uncer-
tainty. For these kind of uncertainties, as in previous section, repeating the measurement
increases the precision.

A di↵erent kind of uncertainty is represented by the systematic uncertainties. A sys-
tematic uncertainty denotes the uncertainty in estimating the e↵ects caused by systematic
mistakes or caused by neglecting systematic mistakes. Systematic mistakes are given by, for
example, faulty instruments, wrong formulae or wrong methods. Careful with the nomen-
clature: a systematic uncertainty is not the same as a systematic mistake (di↵erent authors
refers to these concepts with di↵erent names).
Systematic uncertainties are usually independent from the statistical uncertainties. It is
therefore important to always quote both uncertainties separately in the results:

x = 10.2± 0.2 (stat)± 0.3 (syst)[units] (3.6.37)

The systematic uncertainty is a statement made by the experimenters about their under-
standing of their own equipment, and in general it will not decrease with larger data samples
(like the statistical uncertainty)1. An interesting situation is reached when the systematic
uncertainty is larger than the statistical one. In this case the precision of the result will not
be improved by taking more data; it will only improve by better understanding the experi-
mental setup.

3.7 Work with systematic uncertainties

Once the systematic uncertainties are singled out, they can be treated with the same covari-
ance matrices techniques developed above for the statistical uncertainties.
Suppose you have two measurements x1 and x2 with statistical uncertainties �1 and �2 re-
spectively and a common systematic uncertainty S. Putting together the components in a
matrix we get:

V
tot

i,j =

✓
�
2
1 + S

2
S
2

S
2

�
2
2 + S

2

◆
(3.7.38)

If, instead of a constant systematic uncertainty, the uncertainty is given as a percentage
T = ✏xi (e.g. ✏ = 0.01 for a 1%), then the covariance matrix is:

V
tot

i,j =

✓
�
2
1 + ✏

2
x
2
1 ✏

2
x1x2

✏
2
x1x2 �

2 + ✏
2
x
2
2

◆
(3.7.39)

1
Some systematic uncertainties do get reduced with larger data samples. Take the case of a systematics

uncertainty associated to a calibration. If the calibration is performed on a sample of available data, the larger

the calibration sample the smaller will be the uncertainty.

Suppose the variables x1 and x2 are affected by a common systematic uncertainty S, then:

or in case of a systematic uncertainty given as a percentage:
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Some systematic uncertainties do get reduced with larger data samples. Take the case of a systematics

uncertainty associated to a calibration. If the calibration is performed on a sample of available data, the larger

the calibration sample the smaller will be the uncertainty.
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uncertainty is larger than the statistical one. In this case the precision of the result will not
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If, instead of a constant systematic uncertainty, the uncertainty is given as a percentage
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Some systematic uncertainties do get reduced with larger data samples. Take the case of a systematics

uncertainty associated to a calibration. If the calibration is performed on a sample of available data, the larger

the calibration sample the smaller will be the uncertainty.
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Working with systematic uncertainties
48 CHAPTER 3. MEASUREMENTS UNCERTAINTIES

Example Consider two variables x and y with two sources of uncertainties: a statistical
(sx, sy) with no correlation and a systematic (cx, cy) with full correlation (e.g. luminosity):

x = x0 ± sx (stat)± cx (syst) (3.7.40)

y = y0 ± sy (stat)± cy (syst) (3.7.41)

Because the uncertainty’s are already separated into a correlated and uncorrelated category,
they can be summed up in quadrature at the matrix level, yielding:

V
tot

ij =

✓
s
2
x 0
0 s

2
y

◆
+

✓
c
2
x cxy

cyx c
2
y

◆
=

✓
�
2
x ⇢�x�y

⇢�x�y �
2
y

◆
, (3.7.42)

where ⇢ is the correlation coe�cient ⇢ = cxy

�x�y
and �

2
i
= s

2
i
+ c

2
i
is the sum of the squared

individual uncertainties for x and y, respectively. 2

Example Take three variables x1, x2, x3 with statistical uncertainties �1,�2,�3, a common
systematic uncertainty S and a second systematic uncertainty T shared by only x1 and x2.
In this case the covariance matrix reads:

V
tot

i,j =

0

@
�
2
1 + S

2 + T
2

S
2 + T

2
S
2

S
2 + T

2
�
2
2 + S

2 + T
2

S
2

S
2

S
2

�
2
3 + S

2

1

A (3.7.43)

2

3.8 Evaluating Systematic Uncertainties

To deal with systematic uncertainties one has to distinguish between known and unknown
(or unsuspected) sources of uncertainties.

“Known” sources can be:

• uncertainties on factors in the analysis: calibration, e�ciencies, corrections, etc...

• theoretical uncertainties on branching ratios, masses, fragmentation etc...

To evaluate the impact of systematic uncertainties from known sources si on a correction
factor F , there are several possibilities. Either one can take several (the more the better)
typical assumptions for si and repeat the calculation of F and then calculate the standard
deviation of F . Or an experimental parameter (for example the energy resolution) can be
varied up and down by one sigma and check the change in the variable. Or again another
possibility is to take two extreme assumptions as values for the source si and argue that the
true value has to be in between them and use the di↵erence divided by

p
12. The factor

p
12

is due to the standard deviation of the uniform distribution, which can be used to model the
total ignorance about the parameter value.

Uncertainties from “unsuspected” sources can be studied by repeating the analysis in dif-
ferent ways such as:
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Working with systematic uncertainties

48 CHAPTER 3. MEASUREMENTS UNCERTAINTIES
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3.8 Evaluating Systematic Uncertainties

To deal with systematic uncertainties one has to distinguish between known and unknown
(or unsuspected) sources of uncertainties.

“Known” sources can be:

• uncertainties on factors in the analysis: calibration, e�ciencies, corrections, etc...

• theoretical uncertainties on branching ratios, masses, fragmentation etc...

To evaluate the impact of systematic uncertainties from known sources si on a correction
factor F , there are several possibilities. Either one can take several (the more the better)
typical assumptions for si and repeat the calculation of F and then calculate the standard
deviation of F . Or an experimental parameter (for example the energy resolution) can be
varied up and down by one sigma and check the change in the variable. Or again another
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Statistical inference
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Statistical Inference
Probability:   pdf —> compute probability of any outcome 
Statistics:     give a set of data points sampling a distribution, infer the characteristics of  
                     the parent distribution 

Two main classes of problems: 
Parameter estimation: from the data assumed to follow a pdf —> estimate its parameters 
                                    (point estimation) 
Hypothesis testing:     test if the data collected follow a given distribution 

The two classes are strongly related ! 

Frequentist / Bayesian approach to probability produce two approaches Frequentist / 
Bayesian to statistical inference. (We will use frequentists likelihood)
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Parameters estimation
We call “statistics” any function of the data (i.e. data itself is a random variable) 
Estimator = statistics to estimate a parameter (again a random variable)

parameter estimator of the parameter

For any given parameter you can define several estimators: 

Example: parameter ETHZ students stature. A few possible estimators are: 
-  add all hi and divide by N 
-  add only the first 15, divide by 15; ignore the rest  
-  add all hi and divide by N-1 
-  just quote it to be 1.82 m  
-  multiply all hi and take Nth-root of result 
-  choose the most popular height (mode) 
-  take shortest and tallest and divide by 2 
- …

How do you choose the one that better suits your needs ?

66 CHAPTER 6. PARAMETER ESTIMATION - LIKELIHOOD
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Figure 6.0.1: Meaning of “accuracy” and “precision”

• multiply all hi and take N
th-root of result

• choose the most popular height (mode)

• take shortest and tallest and divide by 2

• add 2nd, 4th, 6th,... and divide by N/2 [ or (N-1)/2 if N odd]

• take only hi of students with brown hair, divide by M

All these are by definition estimators. Some appear to be clearly better than others, but
how do we define what is a better/worse estimator? To answer this question we define some
general properties of the estimators: bias, consistency, e�ciency and robustness.

6.1 Properties of the estimators

The estimator ✓̂ being a function of random variables (data) is itself a random variable and
it will be distributed according to a pdf g(✓̂|✓), which will clearly depend on the parameter
✓. We define the following properties for an estimator (see Fig. 6.1.2):

• An estimator is called unbiased if its expectation value is equal to the true value:
< ✓̂ >= ✓. Thus an estimator is biased if bn =< ✓̂ > �✓ 6= 0. The number bn is called
the bias of the estimator. We include the subscript n in this definition since we will
see that some estimators are unbiased only asymptotically, i.e. only for n ! 1. An
example of an unbiased estimator is the mean (hµ̄i = µ); the third in the list of the
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Estimators properties
Estimators      are random variables —> they are distributed according to a pdf 
(which must depend on   ). 

The estimator is chosen based on your experience and taking into account: 
- bias 
- consistency 
- efficiency 
- robustness
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Bias
an estimator is unbiased if its expectation value is equal to its true value
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The bias of an estimator is: 
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n is the size of the sample used for the estimation. Some estimators are unbiased only 
for large n (i.e. “asymptotically”) 

Example: the mean is an asymptotically unbiased estimator 

66 CHAPTER 6. PARAMETER ESTIMATION - LIKELIHOOD

θ
5− 4− 3− 2− 1− 0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

re
fe
re
nc
e

Accuracy

Precision

Figure 6.0.1: Meaning of “accuracy” and “precision”

• multiply all hi and take N
th-root of result

• choose the most popular height (mode)

• take shortest and tallest and divide by 2

• add 2nd, 4th, 6th,... and divide by N/2 [ or (N-1)/2 if N odd]

• take only hi of students with brown hair, divide by M

All these are by definition estimators. Some appear to be clearly better than others, but
how do we define what is a better/worse estimator? To answer this question we define some
general properties of the estimators: bias, consistency, e�ciency and robustness.

6.1 Properties of the estimators

The estimator ✓̂ being a function of random variables (data) is itself a random variable and
it will be distributed according to a pdf g(✓̂|✓), which will clearly depend on the parameter
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Often knowing the bias allows to build an unbiased estimator by correcting for it
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Estimators properties
Consistency
an estimator is consistent if by adding more data to your experiment you obtain a smaller 
variance
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Figure 6.1.2: Some estimator properties

previous section is asymptotically unbiased (hµ̂i = n/(n � 1)µ) and so bn(µ̂) ! 0 for
n ! 1. If we know the bias, we can construct an unbiased estimator by correcting it.

• An estimator is called consistent if by collecting more data it converges to the true
value, i.e. if 8✏ > 0, limn!1 P (|✓̂� ✓| � ✏) = 0. For instance if ✓̂ is the average of data
distributed according to a p.d.f. where we can apply the CLT, then ✓̂ is a consistent
estimator because N(x̄;µ,�2

/n) tends to a delta function for n ! 1. In the list of the
previous section for example, the first and the third are consistent the second is not.

• An estimator is called e�cient if it has the smallest possible variance of ✓̂ (see later in

this section). The e�ciency ✏ is defined as ✏ = minimalVariance of ✓̂
Variance of ✓̂

.

• An estimator is called robust if it is insensitive to wrong data or wrong assumptions,
especially in the tails of a distribution.

6.2 Estimation of the Mean

The estimator for the mean µ obtained from n independent measurements xi is:

µ̂ =
1

n

X

i

xi. (6.2.1)

Example: 
The distribution                          will tend to a delta for n —> infinity
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/n) tends to a delta function for n ! 1. In the list of the
previous section for example, the first and the third are consistent the second is not.

• An estimator is called e�cient if it has the smallest possible variance of ✓̂ (see later in

this section). The e�ciency ✏ is defined as ✏ = minimalVariance of ✓̂
Variance of ✓̂

.

• An estimator is called robust if it is insensitive to wrong data or wrong assumptions,
especially in the tails of a distribution.

6.2 Estimation of the Mean

The estimator for the mean µ obtained from n independent measurements xi is:

µ̂ =
1

n

X

i

xi. (6.2.1)

Efficiency
if it has the smallest possible variance (see later likelihood and Variance bound)
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/n) tends to a delta function for n ! 1. In the list of the
previous section for example, the first and the third are consistent the second is not.

• An estimator is called e�cient if it has the smallest possible variance of ✓̂ (see later in

this section). The e�ciency ✏ is defined as ✏ = minimalVariance of ✓̂
Variance of ✓̂

.

• An estimator is called robust if it is insensitive to wrong data or wrong assumptions,
especially in the tails of a distribution.

6.2 Estimation of the Mean

The estimator for the mean µ obtained from n independent measurements xi is:

µ̂ =
1

n

X

i

xi. (6.2.1)

Robustness
if it is not sensitive to the details of the parent distribution
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Example: estimation of the mean
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previous section is asymptotically unbiased (hµ̂i = n/(n � 1)µ) and so bn(µ̂) ! 0 for
n ! 1. If we know the bias, we can construct an unbiased estimator by correcting it.

• An estimator is called consistent if by collecting more data it converges to the true
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/n) tends to a delta function for n ! 1. In the list of the
previous section for example, the first and the third are consistent the second is not.

• An estimator is called e�cient if it has the smallest possible variance of ✓̂ (see later in

this section). The e�ciency ✏ is defined as ✏ = minimalVariance of ✓̂
Variance of ✓̂

.

• An estimator is called robust if it is insensitive to wrong data or wrong assumptions,
especially in the tails of a distribution.

6.2 Estimation of the Mean

The estimator for the mean µ obtained from n independent measurements xi is:

µ̂ =
1

n

X

i

xi. (6.2.1)This estimator of 
the mean is: 

unbiased 

consistent
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This estimator is unbiased, i.e. hµ̂i = h 1
n

P
i
xii = 1

n

P
i
hxii = µ. Furthermore it is consistent

because of the CLT. Its variance is given by

V (µ̂) =
1

n
�
2
. (6.2.2)

Whether this estimator is e�cient or not depends on the p.d.f. of the parent distribution.
For instance, given a uniform distribution the mean is not the most e�cient estimator; the
estimator µ̂ = 0.5(xmax + xmin) has a smaller variance. The robustness for the sample mean
is increased if the truncated mean is used. This means that the largest and smallest values
are trimmed (truncated). This more robust mean is less sensitive to outliers, but unless the
parent distribution is symmetric it will be biased. An example for a truncated mean can be
found in sports rating when only 4 out of 6 grades are used to form the final grade.

6.3 Estimation of the Variance

An estimator for the variance of a parent distribution �
2, when we know the true mean

hxi = µ is:

s
2
1 =

1

n

nX

i=1

(xi � µ)2. (6.3.3)

This estimator is unbiased

< s
2
1 > =

1

n
h
X

(xi � µ)2i

=
1

n

⇣
h
X

x
2
i i � 2µh

X
xii+ nµ

2
⌘

=
1

n

�
nhx2i � 2nµhxi+ nµ

2
�

(independent xi so : h
X

x
2
i i = nhx2i)

= hx2i � 2µ2 + µ
2

= �
2 � µ

2 + µ
2 (�2 = hx2i � µ

2)

= �
2

So s
2
1 is an unbiased estimator of the variance of the parent p.d.f �2, when µ is known.

When it is not known, we use the estimate x̄ = µ̂ and define:

s
2
x =

1

n

X
(xi � x̄)2 = x̄2 � x̄

2 (6.3.4)

The expectation value of s2x is:

hs2xi =
1

n

✓
h
X

x
2
i i �

1

n
h
⇣X

xi

⌘2
i
◆
. (6.3.5)

Substituting:

h
X

x
2
i i = nhx2i

�
2 = hx2i � µ

2

V

⇣X
xi

⌘
= h

⇣X
xi

⌘2
i �

⇣
h
X

xii
⌘2
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  efficiency              depends on the pdf: for a uniform distribution the estimator 
                                                                    has a smaller variance
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The robustness depends on the pdf: in general to increase the robustness of the  
estimator we can cut out the tails of the distribution —> truncated mean. 
Price to pay —> in general the estimator will be biased 

Examples:  
- in skating the final score is a truncated mean (exclude the highest/lowest scores) 
- the mean of distributions w/o moments (infinite integral) is taken as the truncated mean
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Example: estimation of the variance
Knowing the true mean of the pdf we define: 
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Whether this estimator is e�cient or not depends on the p.d.f. of the parent distribution.
For instance, given a uniform distribution the mean is not the most e�cient estimator; the
estimator µ̂ = 0.5(xmax + xmin) has a smaller variance. The robustness for the sample mean
is increased if the truncated mean is used. This means that the largest and smallest values
are trimmed (truncated). This more robust mean is less sensitive to outliers, but unless the
parent distribution is symmetric it will be biased. An example for a truncated mean can be
found in sports rating when only 4 out of 6 grades are used to form the final grade.

6.3 Estimation of the Variance

An estimator for the variance of a parent distribution �
2, when we know the true mean

hxi = µ is:

s
2
1 =

1

n

nX

i=1

(xi � µ)2. (6.3.3)

This estimator is unbiased

< s
2
1 > =

1

n
h
X

(xi � µ)2i

=
1

n

⇣
h
X

x
2
i i � 2µh

X
xii+ nµ

2
⌘

=
1

n

�
nhx2i � 2nµhxi+ nµ

2
�

(independent xi so : h
X

x
2
i i = nhx2i)

= hx2i � 2µ2 + µ
2

= �
2 � µ

2 + µ
2 (�2 = hx2i � µ

2)

= �
2

So s
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1 is an unbiased estimator of the variance of the parent p.d.f �2, when µ is known.

When it is not known, we use the estimate x̄ = µ̂ and define:
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Example: estimation of the variance
For the more common case where we don’t know the true mean we defined:
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This means that s2x is a biased estimator of �2. The reason is that we used the sample mean
x̄ as an estimator of the true mean µ. The spread of the data around the sample mean is less
than the spread around the true mean and since the variance is the spread around the true
mean s

2
x underestimates the true variance.

The formula for the variance we are used to is the one with the corrected bias:

s
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n

n� 1
s
2
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n

n� 1
(x̄2 � x̄

2) =
1

n� 1

X
(xi � x̄)2 (6.3.7)

In the same way as we got to the unbiased estimator of the variance, we obtain the expression
for the unbiased estimator of the covariance Vxy of two random variables x and y with
unknown (but estimated) means

V̂xy =
1

n� 1

X
(xi � x̄)(yi � ȳ) =
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n� 1
(xy � x̄ȳ). (6.3.8)

The correlation coe�cient is then given by
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sxsy
. (6.3.9)

6.4 Maximum Likelihood Method

Assume we have n measurements of a random variable x, distributed according to a known
probability density function f(x|✓). Where ✓ stands for one parameter of the p.d.f. (e.g. the
mean). We want to find a general method to determine an estimator for ✓ ( i.e. ✓̂ ).

To understand the maximum likelihood method for parameter estimation (sometimes
abbreviated as ML method) we start from the probability density function f(x|✓)dx (i.e. the
probability density to observe x 2 (x, x+ dx) given ✓). With this we can compute the prob-
ability to observe a certain set of data {xi} given the parameter ✓, as the joint probability:

P = f(x1|✓)dx1 · f(x2|✓)dx2 · . . . · f(xn|✓)dxn (6.4.10)

from which we have (try to work it out):

sx is a biased estimator of the variance. That’s because we used the estimated mean 
instead of the true mean: The spread of the data around the sample mean is smaller 
than the spread around the true mean. 
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This means that s2x is a biased estimator of �2. The reason is that we used the sample mean
x̄ as an estimator of the true mean µ. The spread of the data around the sample mean is less
than the spread around the true mean and since the variance is the spread around the true
mean s

2
x underestimates the true variance.

The formula for the variance we are used to is the one with the corrected bias:
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2) =
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In the same way as we got to the unbiased estimator of the variance, we obtain the expression
for the unbiased estimator of the covariance Vxy of two random variables x and y with
unknown (but estimated) means

V̂xy =
1

n� 1

X
(xi � x̄)(yi � ȳ) =

n

n� 1
(xy � x̄ȳ). (6.3.8)

The correlation coe�cient is then given by

⇢xy =
V̂xy

sxsy
. (6.3.9)

6.4 Maximum Likelihood Method

Assume we have n measurements of a random variable x, distributed according to a known
probability density function f(x|✓). Where ✓ stands for one parameter of the p.d.f. (e.g. the
mean). We want to find a general method to determine an estimator for ✓ ( i.e. ✓̂ ).

To understand the maximum likelihood method for parameter estimation (sometimes
abbreviated as ML method) we start from the probability density function f(x|✓)dx (i.e. the
probability density to observe x 2 (x, x+ dx) given ✓). With this we can compute the prob-
ability to observe a certain set of data {xi} given the parameter ✓, as the joint probability:

P = f(x1|✓)dx1 · f(x2|✓)dx2 · . . . · f(xn|✓)dxn (6.4.10)

This is where the “n-1” terms come from in the sample variance definition (see week 1)
(the normalization is given by the number of degrees of freedom of the problem not by the 
number of points)
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Fits
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What is fitting ?

The basic quantities we used so far to characterize a sample of data are the  
mean and variance. We have just seen how to build their estimators. 

Often you (want to) know more about your data. E.g. you have a model (function/distribution)  
to describe them. 

How can you generically build an estimator for the (parameters of) the model ? 

We will describe two general methods for parameters estimation: 
- least squares 
- maximum likelihood
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What is fitting ?84 CHAPTER 7. PARAMETER ESTIMATION - LEAST SQUARES

x

y

f(x;a)

Figure 7.1.1: Sketch to illustrate the notation.

7.1.1 Connection to the Likelihood Function

The simplest way to see the relation between the LS and the ML methods is to take a set of
data (xi, yi) for which the xi are known precisely and the yi are known with uncertainties �i.
Under the assumption that the yi are Gaussian distributed (for instance when coming from
the CLT), the probability to observe yi given the prediction f(xi; a) is:

p(yi|a) =
1

�i

p
2⇡

e
�(yi�f(xi|a))2/2�2

i (7.1.3)

From this we can build the likelihood function for the complete data set as:

L(a, y) =
Y

i

p(yi|a) (7.1.4)

lnL(a, y) = �1

2

X

i

✓
yi � f(xi|a)

�i

◆2

�
X

i

ln�i
p
2⇡, (7.1.5)

where only the first term depends on a. To maximize the negative log-likelihood as a function
of the parameter a will will have to minimize:

�
2 =

X

i

✓
yi � f(xi|a)

�i

◆2

(7.1.6)

which corresponds to the �
2 procedure shown in the previous section. (Eq. 7.1.1).

7.2 Fitting a Straight Line

As a first example of the application of the LS method, we take a set of N independent
measurements (xi, yi) where we assume that the model is linear, and in particular that f(x) =

Fit with a straight line
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7.1.1 Connection to the Likelihood Function

The simplest way to see the relation between the LS and the ML methods is to take a set of
data (xi, yi) for which the xi are known precisely and the yi are known with uncertainties �i.
Under the assumption that the yi are Gaussian distributed (for instance when coming from
the CLT), the probability to observe yi given the prediction f(xi; a) is:
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which corresponds to the �
2 procedure shown in the previous section. (Eq. 7.1.1).

7.2 Fitting a Straight Line

As a first example of the application of the LS method, we take a set of N independent
measurements (xi, yi) where we assume that the model is linear, and in particular that f(x) =
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7.1.1 Connection to the Likelihood Function

The simplest way to see the relation between the LS and the ML methods is to take a set of
data (xi, yi) for which the xi are known precisely and the yi are known with uncertainties �i.
Under the assumption that the yi are Gaussian distributed (for instance when coming from
the CLT), the probability to observe yi given the prediction f(xi; a) is:
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7.2 Fitting a Straight Line

As a first example of the application of the LS method, we take a set of N independent
measurements (xi, yi) where we assume that the model is linear, and in particular that f(x) =
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Principle of Maximum Likelihood
Suppose you have a number of measurements 
(xi, yi) where i=1,N. 

Assume you have no uncertainty on the values of xi 
while you assume that the uncertainty on y are 
gaussian distributed: σi. 

You convinced yourself that the data are described 
by a model y=f(x; a)  that depends only on one 
parameter “a”.

How do you extract the best estimate of a, given the data you collected ? 

Suppose you have the “true” value of a then your measurements would be distributed as  
yi = f(xi;a). You could compute the probability to obtain one of those measurements: 

(this is the gaussian assumption)

84 CHAPTER 7. PARAMETER ESTIMATION - LEAST SQUARES
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Figure 7.1.1: Sketch to illustrate the notation.

7.1.1 Connection to the Likelihood Function

The simplest way to see the relation between the LS and the ML methods is to take a set of
data (xi, yi) for which the xi are known precisely and the yi are known with uncertainties �i.
Under the assumption that the yi are Gaussian distributed (for instance when coming from
the CLT), the probability to observe yi given the prediction f(xi; a) is:

p(yi|a) =
1
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From this we can build the likelihood function for the complete data set as:

L(a, y) =
Y

i

p(yi|a) (7.1.4)

lnL(a, y) = �1

2

X

i

✓
yi � f(xi|a)

�i

◆2

�
X

i

ln�i
p
2⇡, (7.1.5)

where only the first term depends on a. To maximize the negative log-likelihood as a function
of the parameter a will will have to minimize:
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which corresponds to the �
2 procedure shown in the previous section. (Eq. 7.1.1).

7.2 Fitting a Straight Line

As a first example of the application of the LS method, we take a set of N independent
measurements (xi, yi) where we assume that the model is linear, and in particular that f(x) =

Pa(yi) /
1

�i
e

�(yi�f(xi;a))2

2�2
i
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Principle of Maximum Likelihood

Pa(y1, . . . , yN ) = Proba(y1) · · ·Pa(yN )

The probability to obtain the complete set of measurements is:

So far is just computing probability. Now invert the logic: you don’t know the true value 
of a and you want to extract that value from data: “best estimate from data” = a   
This value is the one that maximizes the probability to observe the measurements we 
have.   “PRINCIPLE OF MAXIMUM LIKELIHOOD”

@�2

@a
= 0 which correspond to minimize the sum of the squares

“LEAST SQUARES METHOD”

�2 =
NX

i=1

(yi � f(x; a))2

�2
y

(the method is trivially generalized to any number of parameters by taking the corresponding 
partial derivatives)

/ ·e�
2/2

�2 =
NX

i=1

(yi � f(x; a))2

�2
i

^
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Least squares method
Interpret the chi-square as a “distance between the data and the model”, the best estimate 
of the parameter “a” is obtained by minimizing that distance:

Chapter 7

Parameter Estimation - Least
Squares

Together with the maximum likelihood method, the method of least squares (LS or LSQ) is
very often used in parameters estimation. In this chapter we will give a description of the
method together with a few examples and show its relation with the ML method.

7.1 The Least Squares Method

Let’s take a set of independent gaussian random variables yi, with i = 1, . . . , N and let’s
assume that each yi is distributed around an unknown mean µi with variance �

2
i
, where the

mean is predicted by a function f(xi; a) (see Fig. 7.1.1). In the typical application the yi are
the (independent) measurements with uncertainty �i and f(xi; a) is the functional form of
the “model” for which you are interested in estimating the value of some parameters (in this
case a). If the data {yi} are gaussian distributed around the mean f(xi; a) then the sum:

�
2 =

NX

i=1

✓
yi � f(xi; a)

�i

◆2

(7.1.1)

obeys a �
2-distribution with (N � 1) degrees of freedom (the number of measurements,

minus the number of fitted parameters). In the general case of p-parameters to be fitted
(f(xi; a) ! f(xi;~a) ) the number of degrees of freedom will be N � p.
To find the best estimate for the parameter a we proceed in a way similar to what we have
done in the ML-method: we look for the value of the parameter a which minimize the �

2.
If you interpret the �

2 as a distance, the LS method corresponds to minimize the distance
between the measured data and the considered model. This boils down to calculating the
minimum of the �

2 as:

d�
2

da
=

NX

i=1

d

da
f(xi; a) ·

yi � f(xi; a)

�
2
i

= 0. (7.1.2)

In case of p parameters a1, . . . , ap and f(x;~a), the idea is the same, just the minimization
will have to be performed simultaneously in p dimensions.
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Example: f = mx
Assume a linear model for the data (xi, yi) and that the measurements are independent. The 
chi-square to minimize is:
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mx (i.e. a straight line passing through the origin). The quantity which has to be minimized
is then:
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◆2

(7.2.7)

We furthermore assume that all the uncertainties are the same: �i = � 8i. Di↵erentiating
with respect to m and equating to zero to obtain the best estimator m̂, we have:

@�
2

@m
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�2
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(xiyi �mx
2
i ) (7.2.8)

X
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(xiyi �mx
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X
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x
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m̂ =
X

i

xiyi

Nx2
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⇣X
x
2
i = Nx2

⌘
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The variance of m̂ can be determined by error propagation to be:

V (m̂) =
X

i

✓
xi

Nx2

◆2

�
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�
2

Nx2
. (7.2.12)

When the straight line does not pass through the origin, f(xi;m, b) = mxi + b the solution
of the LS method is:

m̂ =
xy � x̄ȳ

x2 � x̄2
(7.2.13)

b̂ = ȳ � m̂x̄ (7.2.14)

The variances are given by:

�
2
m = V (m̂) =

�
2

N(x2 � x̄2)
(7.2.15)

�
2
b

= V (b̂) =
�
2
x2

N(x2 � x̄2)
(7.2.16)

cov(m̂, b̂) = � �
2
x̄

N(x2 � x̄2)
(7.2.17)

(7.2.18)

The �
2 for the best fit is:

�
2 =

V (y)

�2
(1� ⇢

2(x, y)) (7.2.19)

Note that V (y) is not the same as �
2! V (y) = ȳ2 � ȳ

2 is the variance of the whole data
sample, whereas � describes the standard deviation of a single measurement around its true

Assume for simplicity that 
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Example: f = mx + b
When the intercept is not zero:
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2 is the variance of the whole data
sample, whereas � describes the standard deviation of a single measurement around its true

and the elements of the covariance matrix are:
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