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Learning goals of the week: 
    [- Fitting: Least Squares method] 

- Maximum Likelihood Fit 
- perform a likelihood fit 

- estimate the uncertainty on the best fit value 
- fit binned data 
- fit constrained parameters 

- Understand similarities/differences wrt to Least Squares 
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Uncertainties on both variables:
f = mx + b
When the uncertainty on one of the two variables cannot be neglected 
 (xi ± σxi   ,yi ± σyi ) the distance between the model and the points can be redefined as 88 CHAPTER 7. PARAMETER ESTIMATION - LEAST SQUARES
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Figure 7.2.2: LS fit with uncertainty only on “y” (left) or both on “x” and “y” (right).

Other particular cases can be found making assumption on the uncertainties, but to solve
the generic problem numerical techniques are typically used.

7.3 Matrix Notation and the uncertainty on the fitted param-
eters

Let a be a vector of n parameters {ai}, i = 1, . . . , n. The N measured data points can be
represented by a vector y = {yi}, i = 1, . . . , N and the function to be fitted as f(xi;a). The
�
2 expression in matrix form becomes:

�
2 =

X

i

X

j

[yi � f(xi;a)]V
�1
ij

[yj � f(xj ;a)] (7.3.43)

= (y � f)TV�1(y � f) = rTV�1r (7.3.44)

Here, r = y � f is the vector of residuals and V is the covariance matrix. By di↵erentiating
�
2 w.r.t each ai and equating each of them to zero yields n equations, which have to be

solved simultaneously in order to get the estimator â. Many mathematical packages (e.g.
MatLab, Octave, etc...) o↵er a way to solve matrix problems; in slang moving from the
single components equations to the matrix form is called “vectorization”. Because they use
highly optimized algorithms, it is always preferable to work with the vectorized version of
the problem.

Let f(x;a) be a linear function of the parameters a: f(x;a) =
P

r
cr(x)ar. Where the

linearity is on the a, the cr(x) can be any function of x. Written in matrix form, it reads:

�
2 = (y �Ca)TV�1(y �Ca). (7.3.45)

If we have N data points and n coe�cients (n  N), then y and a are column vectors with
dimension N and n, respectively. The covariance matrix V has dimension N ⇥ N and the
matrix C has dimensions N ⇥ n.
Minimizing the �

2, the equations @�2
/@a = 0 are:

@�
2
/@a = �2(CTV�1y �CTV�1Ca) = 0 (7.3.46)

a.k.a. “total least squares”
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Figure 7.2.2: LS fit with uncertainty only on “y” (left) or both on “x” and “y” (right).

Other particular cases can be found making assumption on the uncertainties, but to solve
the generic problem numerical techniques are typically used.

7.3 Matrix Notation and the uncertainty on the fitted param-
eters

Let a be a vector of n parameters {ai}, i = 1, . . . , n. The N measured data points can be
represented by a vector y = {yi}, i = 1, . . . , N and the function to be fitted as f(xi;a). The
�
2 expression in matrix form becomes:

�
2 =

X

i

X

j

[yi � f(xi;a)]V
�1
ij

[yj � f(xj ;a)] (7.3.43)

= (y � f)TV�1(y � f) = rTV�1r (7.3.44)

Here, r = y � f is the vector of residuals and V is the covariance matrix. By di↵erentiating
�
2 w.r.t each ai and equating each of them to zero yields n equations, which have to be

solved simultaneously in order to get the estimator â. Many mathematical packages (e.g.
MatLab, Octave, etc...) o↵er a way to solve matrix problems; in slang moving from the
single components equations to the matrix form is called “vectorization”. Because they use
highly optimized algorithms, it is always preferable to work with the vectorized version of
the problem.

Let f(x;a) be a linear function of the parameters a: f(x;a) =
P

r
cr(x)ar. Where the

linearity is on the a, the cr(x) can be any function of x. Written in matrix form, it reads:

�
2 = (y �Ca)TV�1(y �Ca). (7.3.45)

If we have N data points and n coe�cients (n  N), then y and a are column vectors with
dimension N and n, respectively. The covariance matrix V has dimension N ⇥ N and the
matrix C has dimensions N ⇥ n.
Minimizing the �

2, the equations @�2
/@a = 0 are:

@�
2
/@a = �2(CTV�1y �CTV�1Ca) = 0 (7.3.46)

� =
q

�2
yi
+m�2

xi

The “equivalent distance/uncertainty”  
can be written as:

dy/dx  = m

For the distance just sum in quadrature:
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Considering the systematic Errors 87

7.2.1 Considering the systematic Errors

As an example we consider a straight line fit where all the measurements yi have a common
statistic error � and a common systematic error S. We know from the discussion about
systematic errors in Ch. 3 that the covariance matrix cov(yi, yj) can be written as cov(yi, yj) =

�ij�
2 + S

2. The estimators for the slope and the intercept, m̂ and b̂, respectively, are again
given by Eq. 7.2.13 and 7.2.14. The complete formula for the variances reads therefore as
follows:

V (m̂) =
1

N2(x2 � x̄2)2

X

i,j

(xi � x̄)(xj � x̄) · cov(yi, yj) (7.2.34)

=
1

N2(x2 � x̄2)2

0

@
X

i

(xi � x̄)2�2 +
X

i,j

(xi � x̄)(xj � x̄)S2

1

A (7.2.35)

=
1

N2(x2 � x̄2)2

 
X

i

(xi � x̄)2�2

!
(7.2.36)

The second summand in Eq. 7.2.35 vanishes, because 1/n
P

xi = x̄.
The variance for b̂ is:

V (b̂) =
1

N2(x2 � x̄2)2

X

i,j

(x2 � x̄xi)(x2 � x̄xj) · cov(yi, yj) (7.2.37)

The sum
P

i
(x2 � x̄xi) = N(x2 � x̄

2) does not vanish in this equation, thus an additional
term appears which is just S

2; a common systematic error only influences the variance of
the intercept, but it does not change the variance of the slope, as we would have naively
expected.

7.2.2 Straight Line Fit with Errors on both Variables

Now we allow for both variables xi and yi to have errors �xi
and �yi (see Fig. 7.2.2). This

means that the sum of the squared residuals of the error ellipsis of the straight line has to be
minimized, i.e.:

S(m, b) =
X

i

(yi �mxi � b)2

�2
yi
+m2�2

xi

(7.2.38)

As usual, the two equations @S/@m = 0 and @S/@b = 0 have to be solved.
The condition @S/@b = 0 leads to

b̂ =

P
yi/i � m̂

P
xi/iP

1/i
(7.2.39)

where i = �
2
yi
+m

2
�
2
xi
. For m̂, if the errors are all the same on x (i.e. �xi

= �x) and on y

(i.e. �yi = �y), then the solution for the straight line fit is given by:

m̂ =
�x

�y
(A±

p
A2 + 1) (7.2.40)

A =
�
2
xV (y)� �

2
yV (x)

2�x�y · cov(x, y)
(7.2.41)

ȳ = m̂x̄+ b̂ (7.2.42)

Then we solve as usual 
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7.2.2 Straight Line Fit with Errors on both Variables

Now we allow for both variables xi and yi to have errors �xi
and �yi (see Fig. 7.2.2). This

means that the sum of the squared residuals of the error ellipsis of the straight line has to be
minimized, i.e.:

S(m, b) =
X

i

(yi �mxi � b)2

�2
yi
+m2�2

xi

(7.2.38)

As usual, the two equations @S/@m = 0 and @S/@b = 0 have to be solved.
The condition @S/@b = 0 leads to

b̂ =

P
yi/i � m̂

P
xi/iP

1/i
(7.2.39)

where i = �
2
yi
+m

2
�
2
xi
. For m̂, if the errors are all the same on x (i.e. �xi

= �x) and on y

(i.e. �yi = �y), then the solution for the straight line fit is given by:

m̂ =
�x

�y
(A±

p
A2 + 1) (7.2.40)

A =
�
2
xV (y)� �

2
yV (x)

2�x�y · cov(x, y)
(7.2.41)

ȳ = m̂x̄+ b̂ (7.2.42)
Notes:  
- the analytical solution exists only if errors are equal at each point otherwise solve  

numerically 
- if your model is not a simple straight line you have to compute dy/dx

Uncertainties on both variables:
f = mx + b
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Matrix notation
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Figure 7.2.2: LS fit with uncertainty only on “y” (left) or both on “x” and “y” (right).

Other particular cases can be found making assumption on the uncertainties, but to solve
the generic problem numerical techniques are typically used.

7.3 Matrix Notation and the uncertainty on the fitted param-
eters

Let a be a vector of n parameters {ai}, i = 1, . . . , n. The N measured data points can be
represented by a vector y = {yi}, i = 1, . . . , N and the function to be fitted as f(xi;a). The
�
2 expression in matrix form becomes:

�
2 =

X

i

X

j

[yi � f(xi;a)]V
�1
ij

[yj � f(xj ;a)] (7.3.43)

= (y � f)TV�1(y � f) = rTV�1r (7.3.44)

Here, r = y � f is the vector of residuals and V is the covariance matrix. By di↵erentiating
�
2 w.r.t each ai and equating each of them to zero yields n equations, which have to be

solved simultaneously in order to get the estimator â. Many mathematical packages (e.g.
MatLab, Octave, etc...) o↵er a way to solve matrix problems; in slang moving from the
single components equations to the matrix form is called “vectorization”. Because they use
highly optimized algorithms, it is always preferable to work with the vectorized version of
the problem.

Let f(x;a) be a linear function of the parameters a: f(x;a) =
P

r
cr(x)ar. Where the

linearity is on the a, the cr(x) can be any function of x. Written in matrix form, it reads:

�
2 = (y �Ca)TV�1(y �Ca). (7.3.45)

If we have N data points and n coe�cients (n  N), then y and a are column vectors with
dimension N and n, respectively. The covariance matrix V has dimension N ⇥ N and the
matrix C has dimensions N ⇥ n.
Minimizing the �

2, the equations @�2
/@a = 0 are:

@�
2
/@a = �2(CTV�1y �CTV�1Ca) = 0 (7.3.46)

We can rewrite the generic chi-square definition in matrix notation as:
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/@a = �2(CTV�1y �CTV�1Ca) = 0 (7.3.46)

vector of residuals

covariance matrix
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MatLab, Octave, etc...) o↵er a way to solve matrix problems; in slang moving from the
single components equations to the matrix form is called “vectorization”. Because they use
highly optimized algorithms, it is always preferable to work with the vectorized version of
the problem.

Let f(x;a) be a linear function of the parameters a: f(x;a) =
P

r
cr(x)ar. Where the

linearity is on the a, the cr(x) can be any function of x. Written in matrix form, it reads:

�
2 = (y �Ca)TV�1(y �Ca). (7.3.45)

If we have N data points and n coe�cients (n  N), then y and a are column vectors with
dimension N and n, respectively. The covariance matrix V has dimension N ⇥ N and the
matrix C has dimensions N ⇥ n.
Minimizing the �

2, the equations @�2
/@a = 0 are:

@�
2
/@a = �2(CTV�1y �CTV�1Ca) = 0 (7.3.46)

Which leads to a set of n-equations: 
linear case : can find a closed solution 
non-linear case: need to converge iteratively; may be able to linearize the problem 

Practically, when working with n-equations is very convenient to “vectorize” the 
problem i.e. rewrite it in matrix notation and use one of the several highly optimized 
software-packages to solve it.
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Matrix notation: linear example
Assume you want to fit a linear model:  
where the linearity is on     while cr(x) can be any function 
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Figure 7.2.2: LS fit with uncertainty only on “y” (left) or both on “x” and “y” (right).

Other particular cases can be found making assumption on the uncertainties, but to solve
the generic problem numerical techniques are typically used.

7.3 Matrix Notation and the uncertainty on the fitted param-
eters

Let a be a vector of n parameters {ai}, i = 1, . . . , n. The N measured data points can be
represented by a vector y = {yi}, i = 1, . . . , N and the function to be fitted as f(xi;a). The
�
2 expression in matrix form becomes:

�
2 =

X

i

X

j

[yi � f(xi;a)]V
�1
ij

[yj � f(xj ;a)] (7.3.43)

= (y � f)TV�1(y � f) = rTV�1r (7.3.44)

Here, r = y � f is the vector of residuals and V is the covariance matrix. By di↵erentiating
�
2 w.r.t each ai and equating each of them to zero yields n equations, which have to be

solved simultaneously in order to get the estimator â. Many mathematical packages (e.g.
MatLab, Octave, etc...) o↵er a way to solve matrix problems; in slang moving from the
single components equations to the matrix form is called “vectorization”. Because they use
highly optimized algorithms, it is always preferable to work with the vectorized version of
the problem.

Let f(x;a) be a linear function of the parameters a: f(x;a) =
P

r
cr(x)ar. Where the

linearity is on the a, the cr(x) can be any function of x. Written in matrix form, it reads:

�
2 = (y �Ca)TV�1(y �Ca). (7.3.45)

If we have N data points and n coe�cients (n  N), then y and a are column vectors with
dimension N and n, respectively. The covariance matrix V has dimension N ⇥ N and the
matrix C has dimensions N ⇥ n.
Minimizing the �

2, the equations @�2
/@a = 0 are:

@�
2
/@a = �2(CTV�1y �CTV�1Ca) = 0 (7.3.46)
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Figure 7.2.2: LS fit with uncertainty only on “y” (left) or both on “x” and “y” (right).

Other particular cases can be found making assumption on the uncertainties, but to solve
the generic problem numerical techniques are typically used.

7.3 Matrix Notation and the uncertainty on the fitted param-
eters

Let a be a vector of n parameters {ai}, i = 1, . . . , n. The N measured data points can be
represented by a vector y = {yi}, i = 1, . . . , N and the function to be fitted as f(xi;a). The
�
2 expression in matrix form becomes:

�
2 =

X

i

X

j

[yi � f(xi;a)]V
�1
ij

[yj � f(xj ;a)] (7.3.43)

= (y � f)TV�1(y � f) = rTV�1r (7.3.44)

Here, r = y � f is the vector of residuals and V is the covariance matrix. By di↵erentiating
�
2 w.r.t each ai and equating each of them to zero yields n equations, which have to be

solved simultaneously in order to get the estimator â. Many mathematical packages (e.g.
MatLab, Octave, etc...) o↵er a way to solve matrix problems; in slang moving from the
single components equations to the matrix form is called “vectorization”. Because they use
highly optimized algorithms, it is always preferable to work with the vectorized version of
the problem.

Let f(x;a) be a linear function of the parameters a: f(x;a) =
P

r
cr(x)ar. Where the

linearity is on the a, the cr(x) can be any function of x. Written in matrix form, it reads:

�
2 = (y �Ca)TV�1(y �Ca). (7.3.45)

If we have N data points and n coe�cients (n  N), then y and a are column vectors with
dimension N and n, respectively. The covariance matrix V has dimension N ⇥ N and the
matrix C has dimensions N ⇥ n.
Minimizing the �

2, the equations @�2
/@a = 0 are:

@�
2
/@a = �2(CTV�1y �CTV�1Ca) = 0 (7.3.46)

The chi-square can be written as: 
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Figure 7.2.2: LS fit with uncertainty only on “y” (left) or both on “x” and “y” (right).

Other particular cases can be found making assumption on the uncertainties, but to solve
the generic problem numerical techniques are typically used.

7.3 Matrix Notation and the uncertainty on the fitted param-
eters

Let a be a vector of n parameters {ai}, i = 1, . . . , n. The N measured data points can be
represented by a vector y = {yi}, i = 1, . . . , N and the function to be fitted as f(xi;a). The
�
2 expression in matrix form becomes:

�
2 =

X

i

X

j

[yi � f(xi;a)]V
�1
ij

[yj � f(xj ;a)] (7.3.43)

= (y � f)TV�1(y � f) = rTV�1r (7.3.44)

Here, r = y � f is the vector of residuals and V is the covariance matrix. By di↵erentiating
�
2 w.r.t each ai and equating each of them to zero yields n equations, which have to be

solved simultaneously in order to get the estimator â. Many mathematical packages (e.g.
MatLab, Octave, etc...) o↵er a way to solve matrix problems; in slang moving from the
single components equations to the matrix form is called “vectorization”. Because they use
highly optimized algorithms, it is always preferable to work with the vectorized version of
the problem.

Let f(x;a) be a linear function of the parameters a: f(x;a) =
P

r
cr(x)ar. Where the

linearity is on the a, the cr(x) can be any function of x. Written in matrix form, it reads:

�
2 = (y �Ca)TV�1(y �Ca). (7.3.45)

If we have N data points and n coe�cients (n  N), then y and a are column vectors with
dimension N and n, respectively. The covariance matrix V has dimension N ⇥ N and the
matrix C has dimensions N ⇥ n.
Minimizing the �

2, the equations @�2
/@a = 0 are:

@�
2
/@a = �2(CTV�1y �CTV�1Ca) = 0 (7.3.46)

Say you have N data points and n coefficients (n≤N), then y and a are column vectors,  
and [C] = nxN and the covariance matrix [V] = nxn
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Figure 7.2.2: LS fit with uncertainty only on “y” (left) or both on “x” and “y” (right).

Other particular cases can be found making assumption on the uncertainties, but to solve
the generic problem numerical techniques are typically used.

7.3 Matrix Notation and the uncertainty on the fitted param-
eters

Let a be a vector of n parameters {ai}, i = 1, . . . , n. The N measured data points can be
represented by a vector y = {yi}, i = 1, . . . , N and the function to be fitted as f(xi;a). The
�
2 expression in matrix form becomes:

�
2 =

X

i

X

j

[yi � f(xi;a)]V
�1
ij

[yj � f(xj ;a)] (7.3.43)

= (y � f)TV�1(y � f) = rTV�1r (7.3.44)

Here, r = y � f is the vector of residuals and V is the covariance matrix. By di↵erentiating
�
2 w.r.t each ai and equating each of them to zero yields n equations, which have to be

solved simultaneously in order to get the estimator â. Many mathematical packages (e.g.
MatLab, Octave, etc...) o↵er a way to solve matrix problems; in slang moving from the
single components equations to the matrix form is called “vectorization”. Because they use
highly optimized algorithms, it is always preferable to work with the vectorized version of
the problem.

Let f(x;a) be a linear function of the parameters a: f(x;a) =
P

r
cr(x)ar. Where the

linearity is on the a, the cr(x) can be any function of x. Written in matrix form, it reads:

�
2 = (y �Ca)TV�1(y �Ca). (7.3.45)

If we have N data points and n coe�cients (n  N), then y and a are column vectors with
dimension N and n, respectively. The covariance matrix V has dimension N ⇥ N and the
matrix C has dimensions N ⇥ n.
Minimizing the �

2, the equations @�2
/@a = 0 are:

@�
2
/@a = �2(CTV�1y �CTV�1Ca) = 0 (7.3.46)

The minimization gives:
7.3. MATRIX NOTATION AND THE UNCERTAINTYON THE FITTED PARAMETERS89

The solution for the estimator â is then:

â = (CTV�1C)�1CTV�1y := By (7.3.47)

which means that the solution a are linear functions of the measurements y.
Using error propagation we can find the covariance matrix for the â:

U = BVBT = [CTV
�1

C]�1 (7.3.48)

Example Let’s go back to the fit of a straight line of the form f(x) = mx + b to N data
points, which have independent and common errors, such that V = �

2
I, i.e. Vij = �

2
�ij . In

matrix notation we then get:

f1 = b+mx1

f2 = b+mx2
...

...
fN = b+mxN

C =

0

BBB@

1 x1

1 x2
...

...
1 xN

1

CCCA
(7.3.49)

â = �
2(CTC)�1 1

�2
CTy (7.3.50)

which can be explicitly written as:

â =

✓
b̂

m̂

◆
=

✓ P
i
1

P
i
xiP

i
xi

P
i
x
2
i

◆�1✓ P
i
yiP

i
xiyi

◆
(7.3.51)

The inversion of the 2⇥ 2-matrix gives:

1

N(x2 � x̄2)

✓
x2 �x̄

�x̄ 1

◆
(7.3.52)

which finally leads to:

â =

✓
b̂

m̂

◆
=

1

N(x2 � x̄2)

✓
x2 �x̄

�x̄ 1

◆✓ P
i
yiP

i
xiyi

◆
. (7.3.53)

Which corresponds to the expressions for m̂ and b̂ which we extracted in 7.2.13 and 7.2.14.
The variance for the estimator â is:

V(â) =

✓
V (b) cov(b,m)

cov(b,m) V (m)

◆
=

�
2

N(x2 � x̄2)

✓
x2 �x̄

�x̄ 1

◆
(7.3.54)

2

Example In a second example we fit the parabola f(x) = a0 + a1x+ a2x
2 to N data points.

Again we assume the errors being independent and equal for all data points. The matrix C
is now given by:

C =

0

BBB@

1 x1 x
2
1

1 x2 x
2
2

...
...

...
1 xN x

2
N

1

CCCA
(7.3.55)

which gives:

i.e. the solution is a linear function of the measurements y.

The solution is found by a simple matrix inversion ! (normal equations)

Example: 
f(x|a)= a1+a2x+a3x2+a4√x  is linear in a  
f(x|a)= a1+sin(x+a2) is not 



Mauro Donegà - Severian Gvasaliya ETHZ                                                              VP - Data Analysis Toolbox
6

Uncertainties
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Going through the same steps as for the linear case we obtain:
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â2

1
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i
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P
i
xi
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i
x
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xi
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x
2
i

P
i
x
3
iP

i
x
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�10
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A (7.3.56)

The generalization of this method to higher-order polynomials follows the same pattern. 2

Another way to write the (inverse) of the covariance matrix is:

(U�1)ij =
1

2


@
2
�
2

@ai@aj

�

a=â

(7.3.57)

which is the expression of the RCF bound in the case that the measurements y are gaussian
distributed, and where we use the relation with the log likelihood lnL = �

2
/2.

Again in case of a function f linear in a, the �
2 becomes quadratic in a:

�
2(a) = �

2(â) +
1

2

X

i,j=1


@
2
�
2

@ai@aj

�

a=â

(ai � âi)(aj � âj) (7.3.58)

Using the expression of the variance we just found, the equation above corresponds to contours
in the parameter space defined by âi ± �̂i and therefore giving the ±1� deviations from the
estimators:

�
2(a± �̂) = �

2(â) + 1 = �
2
min + 1. (7.3.59)

Hence the �2-function is a parabola with a minimum at â and the errors � for the estimators
are determined by �

2
min

+ 1. In general, if the function f is not linear in the parameters,
the contour will not be an ellipse, but it will still define a confidence region reflecting the
statistical uncertainty on the fitted parameters. The precise construction of the confidence
region will be developed in the Sec. 9. It is important to notice that the confidence level of
the region defined by the contour, depends on the number of parameters fitted: 6.83% for
one parameter, 39.4% for two, 19.9% for three, etc... (see again Sec. 9).

7.4 Binned �2 fit

In this section we will apply the LS method to binned data. In the case of f being a probability
distribution function (a p.d.f. instead of any generic function), we can interpret the value
of f integrated over a given range (“bin”), as the expected number of events in that bin
fi = E[yi]:

fi(a) = n

Z
x
max

i

x
min

i

f(x;a)dx = npi(a) (7.4.60)

where x
min

i
and x

max

i
are the bin boundaries, the pi(a) is the probability to have an event in

the bin i, given the parameters a and n is the overall normalization.
The fit proceeds as before minimizing the �

2 w.r.t. the parameters a:

�
2(yi|a) =

X

i

(yi � fi(a))2

�
2
i

(7.4.61)

If the function is linear, then the chi2 is quadratic in a:

and, as done before, reinterpret this as the uncertainty ellipse. 
(in 1D it corresponds to the usual: best estimate ±1σ ) 
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Going through the same steps as for the linear case we obtain:
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â2

1

A =

0

@

P
i
1

P
i
xi

P
i
x
2
iP

i
xi

P
x
2
i

P
i
x
3
iP

i
x
2
i

P
x
3
i

P
i
x
4
i

1

A
�10

@

P
i
yiP

i
xiyiP
x
2
i
yi

1

A (7.3.56)

The generalization of this method to higher-order polynomials follows the same pattern. 2

Another way to write the (inverse) of the covariance matrix is:

(U�1)ij =
1

2


@
2
�
2

@ai@aj

�

a=â

(7.3.57)

which is the expression of the RCF bound in the case that the measurements y are gaussian
distributed, and where we use the relation with the log likelihood lnL = �

2
/2.

Again in case of a function f linear in a, the �
2 becomes quadratic in a:

�
2(a) = �

2(â) +
1

2

X

i,j=1


@
2
�
2

@ai@aj

�

a=â

(ai � âi)(aj � âj) (7.3.58)

Using the expression of the variance we just found, the equation above corresponds to contours
in the parameter space defined by âi ± �̂i and therefore giving the ±1� deviations from the
estimators:

�
2(a± �̂) = �

2(â) + 1 = �
2
min + 1. (7.3.59)

Hence the �2-function is a parabola with a minimum at â and the errors � for the estimators
are determined by �

2
min

+ 1. In general, if the function f is not linear in the parameters,
the contour will not be an ellipse, but it will still define a confidence region reflecting the
statistical uncertainty on the fitted parameters. The precise construction of the confidence
region will be developed in the Sec. 9. It is important to notice that the confidence level of
the region defined by the contour, depends on the number of parameters fitted: 6.83% for
one parameter, 39.4% for two, 19.9% for three, etc... (see again Sec. 9).

7.4 Binned �2 fit

In this section we will apply the LS method to binned data. In the case of f being a probability
distribution function (a p.d.f. instead of any generic function), we can interpret the value
of f integrated over a given range (“bin”), as the expected number of events in that bin
fi = E[yi]:

fi(a) = n

Z
x
max

i

x
min

i

f(x;a)dx = npi(a) (7.4.60)

where x
min

i
and x

max

i
are the bin boundaries, the pi(a) is the probability to have an event in

the bin i, given the parameters a and n is the overall normalization.
The fit proceeds as before minimizing the �

2 w.r.t. the parameters a:

�
2(yi|a) =

X

i

(yi � fi(a))2

�
2
i

(7.4.61)

The chi-square is a paraboloid with a minimum at the best estimate of the parameters 
and which provides the uncertainty defined by the contour: 

90 CHAPTER 7. PARAMETER ESTIMATION - LEAST SQUARES

Going through the same steps as for the linear case we obtain:
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The generalization of this method to higher-order polynomials follows the same pattern. 2

Another way to write the (inverse) of the covariance matrix is:

(U�1)ij =
1

2


@
2
�
2

@ai@aj

�

a=â

(7.3.57)

which is the expression of the RCF bound in the case that the measurements y are gaussian
distributed, and where we use the relation with the log likelihood lnL = �

2
/2.

Again in case of a function f linear in a, the �
2 becomes quadratic in a:

�
2(a) = �

2(â) +
1

2

X

i,j=1


@
2
�
2

@ai@aj

�

a=â

(ai � âi)(aj � âj) (7.3.58)

Using the expression of the variance we just found, the equation above corresponds to contours
in the parameter space defined by âi ± �̂i and therefore giving the ±1� deviations from the
estimators:

�
2(a± �̂) = �

2(â) + 1 = �
2
min + 1. (7.3.59)

Hence the �2-function is a parabola with a minimum at â and the errors � for the estimators
are determined by �

2
min

+ 1. In general, if the function f is not linear in the parameters,
the contour will not be an ellipse, but it will still define a confidence region reflecting the
statistical uncertainty on the fitted parameters. The precise construction of the confidence
region will be developed in the Sec. 9. It is important to notice that the confidence level of
the region defined by the contour, depends on the number of parameters fitted: 6.83% for
one parameter, 39.4% for two, 19.9% for three, etc... (see again Sec. 9).

7.4 Binned �2 fit

In this section we will apply the LS method to binned data. In the case of f being a probability
distribution function (a p.d.f. instead of any generic function), we can interpret the value
of f integrated over a given range (“bin”), as the expected number of events in that bin
fi = E[yi]:

fi(a) = n

Z
x
max

i

x
min

i

f(x;a)dx = npi(a) (7.4.60)

where x
min

i
and x

max

i
are the bin boundaries, the pi(a) is the probability to have an event in

the bin i, given the parameters a and n is the overall normalization.
The fit proceeds as before minimizing the �

2 w.r.t. the parameters a:

�
2(yi|a) =

X

i

(yi � fi(a))2

�
2
i

(7.4.61)

If the function is not linear the uncertainty will not be a simple ellipsoid.

Which in one dimension reduces to:

You can get the covariance matrix directly as:

U = BV BT = (CTV �1C)�1
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Going through the same steps as for the linear case we obtain:
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The generalization of this method to higher-order polynomials follows the same pattern. 2

Another way to write the (inverse) of the covariance matrix is:

(U�1)ij =
1

2


@
2
�
2

@ai@aj

�

a=â

(7.3.57)

which is the expression of the RCF bound in the case that the measurements y are Gaussian
distributed, and where we use the relation with the log likelihood � lnL = �

2
/2 (a part from

an overall constant).

Again in case of a function f linear in a, the �
2 becomes quadratic in a:

�
2(a) = �

2(â) +
1

2

X

i,j=1


@
2
�
2

@ai@aj

�

a=â

(ai � âi)(aj � âj) (7.3.58)

Using the expression of the variance we just found, the equation above corresponds to contours
in the parameter space defined by âi ± �̂i and therefore giving the ±1� deviations from the
estimators:

�
2(a± �̂) = �

2(â) + 1 = �
2
min + 1. (7.3.59)

Hence the �2-function is a parabola with a minimum at â and the errors � for the estimators
are determined by �

2
min

+ 1. In general, if the function f is not linear in the parameters,
the contour will not be an ellipse, but it will still define a confidence region reflecting the
statistical uncertainty on the fitted parameters. The precise construction of the confidence
region will be developed in the Sec. 9. It is important to notice that the confidence level of
the region defined by the contour, depends on the number of parameters fitted: 6.83% for
one parameter, 39.4% for two, 19.9% for three, etc... (see again Sec. 9).

7.4 Binned �2 fit

In this section we will apply the LS method to binned data. In the case of f being a probability
distribution function (a p.d.f. instead of any generic function), we can interpret the value
of f integrated over a given range (“bin”), as the expected number of events in that bin
fi = E[yi]:

fi(a) = n

Z
x
max

i

x
min

i

f(x;a)dx = npi(a) (7.4.60)

where x
min

i
and x

max

i
are the bin boundaries, the pi(a) is the probability to have an event in

the bin i, given the parameters a and n is the overall normalization.
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Going through the same steps as for the linear case we obtain:
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The generalization of this method to higher-order polynomials follows the same pattern. 2
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which is the expression of the RCF bound in the case that the measurements y are Gaussian
distributed, and where we use the relation with the log likelihood � lnL = �
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Using the expression of the variance we just found, the equation above corresponds to contours
in the parameter space defined by âi ± �̂i and therefore giving the ±1� deviations from the
estimators:

�
2(a± �̂) = �

2(â) + 1 = �
2
min + 1. (7.3.59)

Hence the �2-function is a parabola with a minimum at â and the errors � for the estimators
are determined by �

2
min

+ 1. In general, if the function f is not linear in the parameters,
the contour will not be an ellipse, but it will still define a confidence region reflecting the
statistical uncertainty on the fitted parameters. The precise construction of the confidence
region will be developed in the Sec. 9. It is important to notice that the confidence level of
the region defined by the contour, depends on the number of parameters fitted: 6.83% for
one parameter, 39.4% for two, 19.9% for three, etc... (see again Sec. 9).

7.4 Binned �2 fit

In this section we will apply the LS method to binned data. In the case of f being a probability
distribution function (a p.d.f. instead of any generic function), we can interpret the value
of f integrated over a given range (“bin”), as the expected number of events in that bin
fi = E[yi]:

fi(a) = n
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f(x;a)dx = npi(a) (7.4.60)

where x
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i
and x
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i
are the bin boundaries, the pi(a) is the probability to have an event in

the bin i, given the parameters a and n is the overall normalization.
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are determined by �

2
min

+ 1. In general, if the function f is not linear in the parameters,
the contour will not be an ellipse, but it will still define a confidence region reflecting the
statistical uncertainty on the fitted parameters. The precise construction of the confidence
region will be developed in the Sec. 9. It is important to notice that the confidence level of
the region defined by the contour, depends on the number of parameters fitted: 6.83% for
one parameter, 39.4% for two, 19.9% for three, etc... (see again Sec. 9).

7.4 Binned �2 fit

In this section we will apply the LS method to binned data. In the case of f being a probability
distribution function (a p.d.f. instead of any generic function), we can interpret the value
of f integrated over a given range (“bin”), as the expected number of events in that bin
fi = E[yi]:

fi(a) = n

Z
x
max

i

x
min

i

f(x;a)dx = npi(a) (7.4.60)

where x
min

i
and x

max

i
are the bin boundaries, the pi(a) is the probability to have an event in

the bin i, given the parameters a and n is the overall normalization.



Mauro Donegà - Severian Gvasaliya ETHZ                                                              VP - Data Analysis Toolbox
7

Correlated measurements
Any time we perform a measurement we should use the full covariance matrix to take into 
account “bin to bin migrations”, sometimes we can avoid it! 

Examples: 
- you fill an histogram with measurements obtained with an instrument with a resolution 
much smaller than the bin size (diagonal covariance matrix) 
- you fill an histogram with measurements obtained with an instrument with a resolution 
larger/worse than the bin size (non diagonal covariance matrix)

In these cases we need to take into account the off-diagonal elements of the covariance 
matrix. 

The covariance/correlation matrix can be computed directly from the definition for each 
pair of bins i,j:

⇢i,j =

P
k(x

i
k � x̄i)(xj

k � x̄j)qP
k(x

i
k � x̄i)2

P
k(x

j
k � x̄j)2

(the central values come from the minimization and the variances are taken from the hessian at the minimum)
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Binned X2 fit
This is the typical application of chi-square fits to histograms (binned data). 

Here interpret “f” as the pdf you want to fit. It needs to be “binned” too: integrate the pdf 
over the bin range and interpret it as the “expected number of events” in that bin.
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Using the expression of the variance we just found, the equation above corresponds to contours
in the parameter space defined by âi ± �̂i and therefore giving the ±1� deviations from the
estimators:
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Hence the �2-function is a parabola with a minimum at â and the errors � for the estimators
are determined by �

2
min

+ 1. In general, if the function f is not linear in the parameters,
the contour will not be an ellipse, but it will still define a confidence region reflecting the
statistical uncertainty on the fitted parameters. The precise construction of the confidence
region will be developed in the Sec. 9. It is important to notice that the confidence level of
the region defined by the contour, depends on the number of parameters fitted: 6.83% for
one parameter, 39.4% for two, 19.9% for three, etc... (see again Sec. 9).

7.4 Binned �2 fit

In this section we will apply the LS method to binned data. In the case of f being a probability
distribution function (a p.d.f. instead of any generic function), we can interpret the value
of f integrated over a given range (“bin”), as the expected number of events in that bin
fi = E[yi]:

fi(a) = n

Z
x
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x
min

i

f(x;a)dx = npi(a) (7.4.60)

where x
min

i
and x

max

i
are the bin boundaries, the pi(a) is the probability to have an event in

the bin i, given the parameters a and n is the overall normalization.
The fit proceeds as before minimizing the �

2 w.r.t. the parameters a:

�
2(yi|a) =

X

i

(yi � fi(a))2

�
2
i

(7.4.61)
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are determined by �
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+ 1. In general, if the function f is not linear in the parameters,
the contour will not be an ellipse, but it will still define a confidence region reflecting the
statistical uncertainty on the fitted parameters. The precise construction of the confidence
region will be developed in the Sec. 9. It is important to notice that the confidence level of
the region defined by the contour, depends on the number of parameters fitted: 6.83% for
one parameter, 39.4% for two, 19.9% for three, etc... (see again Sec. 9).
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pi(a) is the probability for an event to be in bin “i” given the parameters a
n is the normalization (total number of events)

The method then applies as before:  
minimize the chi-square wrt the parameters a; 
σi is the uncertainty on the number of entries  
in bin i.
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where here �i is the variance of the expected number of entries in bin i. If the number of entries
in bin i is small compared to the total number of entries in the histogram then we can assume
that they are Poisson distributed and the variance is equal to the mean �

2
i
= fi(a) = npi(a).

Often, instead of using the variance of the expected number of entries in bin i, the variance
of the observed number of entries in bin i is used, leading to:

�
2(yi|a) =

X

i

(yi � fi(a))2

yi
. (7.4.62)

This new expression is called the modified LS method. Even if easier to implement, it
brings in the problem of the variance estimation for bins which are poorly populated or have
no entries at all. As a rule of thumb, try to have at least 5 entries per bin. Two situations
are rather typical: small statistics in the tails of a distribution, or the whole histogram is
sparsely populated. In the first case, try to rebin, for the latter just move to an unbinned
ML fit to use the full information you have in your data.

7.5 Use of the �2 to test the goodness of fit

If the �
2 is large after minimization, then the function is probably badly chosen (i.e. not

correctly describing the data); intuitively, the �
2 should be small if the function describes

the data. On the other hand, the �
2 can be small, even with a bad model, when the uncer-

tainties are overestimated (�2
i
sits at the denominator). You can always get very small �2 if

you assume large enough uncertainties! If the errors are too large the whole method loses its
predictive power.

We have already encountered in 2.2.3 the �
2-distribution:

f(�2;n) =
2�n/2

�(n/2)
�
n�2

e
��

2
/2
. (7.5.63)

The distribution depends on n, the number of degrees of freedom, which is the number of
data points minus the number of parameters of the model. Because the �

2 distribution has
expectation value n and variance 2n, we expect the �

2 divided by the number of degrees
of freedom to be approximately one: �

2
/n ⇡ 1. It the �

2
/n is much larger than one, the

data are not properly described by the model. Let’s introduce the definition of p�value to
quantify the level of agreement of the model with data:

p =

Z 1

�2
f(x0;n)dx0 (7.5.64)

where f(x0;n) is the �
2 distribution for n degrees of freedom. Values can be computed in

ROOT using TMath::ChisquareQuantile(Double t p, Double t ndf).

The p�value for a given (�2;n) is a measurement of the “goodness of fit”; when repeating the
experiment several times it gives the probability, under the hypothesis f , of obtaining a result
as incompatible with f or worse (i.e. �2 equal or larger) than the one actually observed. The

poisson uncertainty = √(number of entries)2   

Careful when you have few or zero entries per 
bin (rule of thumb always have ≥ 5 entries/bin)

Rebin (also see later the maximum likelihood approach)

(see discussion on uncertainties Lyons 4.5)
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Goodness of fit
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χ2 (chi-squared) distribution
The chi-squared pdf is the joint probability of the product of n gaussians

28 CHAPTER 2. PROBABILITY DISTRIBUTIONS

N-dimensional Gaussian Distribution
The N-dimensional Gaussian distribution is defined by

f(x;µ, V ) =
1

(2⇡)N/2|V |1/2
exp

✓
�1

2
(x� µ)TV �1(x� µ)

◆
. (2.2.29)

Here, x and µ are column vectors with the components x1, . . . , xN and µ1, . . . , µN , respec-
tively. The transposed vectors xT and µ

T are the corresponding row vectors and |V | is the
determinant of the symmetric N ⇥N covariance matrix V . The expectation values and the
covariances are given by:

• hxii = µi

• V (xi) = Vii

• cov(xi, xj) = Vij

In the simplified case of a two-dimensional Gaussian distribution we can write

f(x1, x2;µ1 µ2,�1,�2, ⇢) =
1

2⇡�1�2
p
1� ⇢2

· exp
✓
� 1

2(1� ⇢2)

◆

⇥ exp
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x1 � µ1

�1

◆2✓
x2 � µ2

�2

◆2

� 2⇢
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x1 � µ1

�1
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x2 � µ2

�2

◆#
.

We will come back to the specific case of the gaussian distribution in multiple dimensions in
Ch. 3 when talking about the error matrix.

2.2.3 �2 Distribution

Assume that x1, x2, · · · , xn are independent random variables, which obey a (standardized)
Gaussian distribution with mean 0 and variance 1. Then the joint p.d.f. is:

f(x;µ,�) =
nY

i=1

1p
2⇡�i

exp

"
�1

2

✓
xi � µi

�i

◆2
#

(2.2.30)

= exp

"
�1

2

nX

i=1

✓
xi � µi

�i

◆2
#

nY

i=1

1p
2⇡�i

(2.2.31)

Then the variable �
2(n) defined as

�
2(n) =

nX

i=1

✓
xi � µi

�i

◆2

(2.2.32)

being a function of random variables is itself a random variable distributed as a �2 distribution
with n degrees of freedom. The probability density is given by (see Fig. 2.2.7):

�
2(n) = f(�2;n) =

(�2)n/2�1
e
��

2
/2

�(n/2)2n/2
. (2.2.33)

The �
2(n) p.d.f. has the properties:
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Assume that x1, x2, · · · , xn are independent random variables, which obey a (standardized)
Gaussian distribution with mean 0 and variance 1. Then the joint p.d.f. is:
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Then the variable �
2(n) defined as
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(2.2.32)

being a function of random variables is itself a random variable distributed as a �2 distribution
with n degrees of freedom. The probability density is given by (see Fig. 2.2.7):

�
2(n) = f(�2;n) =

(�2)n/2�1
e
��

2
/2

�(n/2)2n/2
. (2.2.33)

The �
2(n) p.d.f. has the properties:

The pdf is:

We define
as the chi-squared variable 
with n-degrees of freedom =  
number of points - parameters 
of the fit

28 CHAPTER 2. PROBABILITY DISTRIBUTIONS

N-dimensional Gaussian Distribution
The N-dimensional Gaussian distribution is defined by

f(x;µ, V ) =
1

(2⇡)N/2|V |1/2
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�1
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(x� µ)TV �1(x� µ)

◆
. (2.2.29)

Here, x and µ are column vectors with the components x1, . . . , xN and µ1, . . . , µN , respec-
tively. The transposed vectors xT and µ

T are the corresponding row vectors and |V | is the
determinant of the symmetric N ⇥N covariance matrix V . The expectation values and the
covariances are given by:
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χ2 (chi-squared) distribution

Properties: 
- mean=n 
- variance = 2n  
- mode=n-2 for n≥2 and 0 for n≤2

We define: χ2(n)/n as reduced χ2.  

For n → ∞, χ2(n) → Gaussian(χ2;n,2n) 

Typically we can approximate the χ2 distribution to a gaussian for n ≥ 30. 

[wiki]
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X2 goodness of fit

Quantitatively
We’ve see the X2 distribution before:

7.5. USE OF THE �
2 TO TEST THE GOODNESS OF FIT 91

where here �i is the variance of the expected number of entries in bin i. If the number of entries
in bin i is small compared to the total number of entries in the histogram then we can assume
that they are Poisson distributed and the variance is equal to the mean �

2
i
= fi(a) = npi(a).

Often, instead of using the variance of the expected number of entries in bin i, the variance
of the observed number of entries in bin i is used, leading to:

�
2(yi|a) =

X

i

(yi � fi(a))2

yi
. (7.4.62)

This new expression is called the modified LS method. Even if easier to implement, it
brings in the problem of the variance estimation for bins which are poorly populated or have
no entries at all. As a rule of thumb, try to have at least 5 entries per bin. Two situations
are rather typical: small statistics in the tails of a distribution, or the whole histogram is
sparsely populated. In the first case, try to rebin, for the latter just move to an unbinned
ML fit to use the full information you have in your data.

7.5 Use of the �2 to test the goodness of fit

If the �
2 is large after minimization, then the function is probably badly chosen (i.e. not

correctly describing the data); intuitively, the �
2 should be small if the function describes

the data. On the other hand, the �
2 can be small, even with a bad model, when the uncer-

tainties are overestimated (�2
i
sits at the denominator). You can always get very small �2 if

you assume large enough uncertainties! If the errors are too large the whole method loses its
predictive power.

We have already encountered in 2.2.3 the �
2-distribution:

f(�2;n) =
2�n/2

�(n/2)
�
n�2

e
��

2
/2
. (7.5.63)

The distribution depends on n, the number of degrees of freedom, which is the number of
data points minus the number of parameters of the model. Because the �

2 distribution has
expectation value n and variance 2n, we expect the �

2 divided by the number of degrees
of freedom to be approximately one: �

2
/n ⇡ 1. It the �

2
/n is much larger than one, the

data are not properly described by the model. Let’s introduce the definition of p�value to
quantify the level of agreement of the model with data:

p =

Z 1

�2
f(x0;n)dx0 (7.5.64)

where f(x0;n) is the �
2 distribution for n degrees of freedom. Values can be computed in

ROOT using TMath::ChisquareQuantile(Double t p, Double t ndf).

The p�value for a given (�2;n) is a measurement of the “goodness of fit”; when repeating the
experiment several times it gives the probability, under the hypothesis f , of obtaining a result
as incompatible with f or worse (i.e. �2 equal or larger) than the one actually observed. The

The expectation value of the X2  is n, so the number X2/n ~ 1.

Definition: p-value = the probability, 
under the hypothesis f, of obtaining 
a result as incompatible with f or 
worse (i.e. X2 equal or larger) than 
the one actually observed.  

7.5. USE OF THE �
2 TO TEST THE GOODNESS OF FIT 91

where here �i is the variance of the expected number of entries in bin i. If the number of entries
in bin i is small compared to the total number of entries in the histogram then we can assume
that they are Poisson distributed and the variance is equal to the mean �

2
i
= fi(a) = npi(a).

Often, instead of using the variance of the expected number of entries in bin i, the variance
of the observed number of entries in bin i is used, leading to:

�
2(yi|a) =

X

i

(yi � fi(a))2

yi
. (7.4.62)

This new expression is called the modified LS method. Even if easier to implement, it
brings in the problem of the variance estimation for bins which are poorly populated or have
no entries at all. As a rule of thumb, try to have at least 5 entries per bin. Two situations
are rather typical: small statistics in the tails of a distribution, or the whole histogram is
sparsely populated. In the first case, try to rebin, for the latter just move to an unbinned
ML fit to use the full information you have in your data.

7.5 Use of the �2 to test the goodness of fit

If the �
2 is large after minimization, then the function is probably badly chosen (i.e. not

correctly describing the data); intuitively, the �
2 should be small if the function describes

the data. On the other hand, the �
2 can be small, even with a bad model, when the uncer-

tainties are overestimated (�2
i
sits at the denominator). You can always get very small �2 if

you assume large enough uncertainties! If the errors are too large the whole method loses its
predictive power.

We have already encountered in 2.2.3 the �
2-distribution:

f(�2;n) =
2�n/2

�(n/2)
�
n�2

e
��

2
/2
. (7.5.63)

The distribution depends on n, the number of degrees of freedom, which is the number of
data points minus the number of parameters of the model. Because the �

2 distribution has
expectation value n and variance 2n, we expect the �

2 divided by the number of degrees
of freedom to be approximately one: �

2
/n ⇡ 1. It the �

2
/n is much larger than one, the

data are not properly described by the model. Let’s introduce the definition of p�value to
quantify the level of agreement of the model with data:

p =

Z 1

�2
f(x0;n)dx0 (7.5.64)

where f(x0;n) is the �
2 distribution for n degrees of freedom. Values can be computed in

ROOT using TMath::ChisquareQuantile(Double t p, Double t ndf).

The p�value for a given (�2;n) is a measurement of the “goodness of fit”; when repeating the
experiment several times it gives the probability, under the hypothesis f , of obtaining a result
as incompatible with f or worse (i.e. �2 equal or larger) than the one actually observed. The

A way to quantify the goodness of fit is to see “how probable is the X2/n we obtain”, 
in other terms of far off in the tails of the X2 distribution we are.
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X2 goodness of fit
92 CHAPTER 7. PARAMETER ESTIMATION - LEAST SQUARES

Figure 7.5.3: One minus the �
2 cumulative distribution, 1F (�2;n), for n degrees of freedom.

This gives the p�value for the �
2 goodness-of-fit test.

threshold on the p�value used to reject the model is subjective; typical values used are of a
few percent. Fig. 7.5 maps the relation between the �

2, the number of degrees of freedom
and the p�value. In particular is shown the example where, for n = 4, a �

2
> 6 will be

observed in 20% of the cases.
We will come back in Ch. 8 to di↵erent quantitative ways to evaluate the compatibility of
the data with a model

7.6 References

Most of the material of this section comes from:

• G. Cowan [18], “Statistical Data Analysis”: Ch. 7

Example: n = 4, a X2> 6 will be observed in 20% of the cases  

In python:  
>>> from scipy.stats import chi2 
>>> 1 - stats.chi2.cdf (value, dof)
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Numerical minimization: 
gradient descent

The problem is to find the minimum of a function F(x|ϑ) (here the X2) in the (generally) multi-
dimensional space of the parameters ϑ. 

The most widely used algorithm is called “gradient descent”: from a given point it computes 
the derivatives of F in the n-dimensional space and moves down the steepest slope towards 
the minimum (opposite to gradient direction) 

More precisely: 
- take an initial guess ϑ0 of the minimum (typically the closer to the minimum the better) 

- compute  

 where α is a parameter called “learning rate” 
  NB: here the variable is ϑ. “Computing” F(ϑ) means compute the X2 over all points in the     
        dataset 

- until it converges: descent smaller than a tolerance value

✓j = ✓j � ↵
@

@✓j
F (✓)
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The ellipses shown above are the contours of a quadratic function. Also
shown is the trajectory taken by gradient descent, which was initialized at
(48,30). The x’s in the figure (joined by straight lines) mark the successive
values of θ that gradient descent went through.

When we run batch gradient descent to fit θ on our previous dataset,
to learn to predict housing price as a function of living area, we obtain
θ0 = 71.27, θ1 = 0.1345. If we plot hθ(x) as a function of x (area), along
with the training data, we obtain the following figure:
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If the number of bedrooms were included as one of the input features as well,
we get θ0 = 89.60, θ1 = 0.1392, θ2 = −8.738.

The above results were obtained with batch gradient descent. There is
an alternative to batch gradient descent that also works very well. Consider
the following algorithm:
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If the number of bedrooms were included as one of the input features as well,
we get θ0 = 89.60, θ1 = 0.1392, θ2 = −8.738.

The above results were obtained with batch gradient descent. There is
an alternative to batch gradient descent that also works very well. Consider
the following algorithm:

       x       

   
   

 y
   

   
  y = ax + b

a

b

The size of the step is the product of 
the learning rate times the gradient. So 
“automatically” the steps taken are 
shorter and shorted the closer we are 
to the minimum

             

Numerical minimization: 
gradient descent
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