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Learning goals of the week: 
- Maximum Likelihood Fit 

- perform a likelihood fit 
- estimate the uncertainty on the best fit value 
- fit binned data 
- fit constrained parameters 

- Understand similarities/differences wrt to Least Squares 
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Likelihood
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Maximum Likelihood
The maximum likelihood method is intuitively the best you can do to setup a  
generic estimator: 

- take N independent measurements of random variable xi, distributed according to a 
known pdf f(x|a), with an unknown parameter a.  

- the probability to measure x1, x2, ... xN  (in any order) is:  
  P(x1 in [x1,x1+dx1]) = f(x1|a)dx1  
   P(x2 in [x2,x2+dx2]) = f(x2|a)dx2   
   … 
   P(xN in [xN,xN+dxN]) = f(xN|a)dxN   

- the joint probability to obtain these measurements is the product of the probabilities  
      f(x1|a)dx1 f(x2|a)dx2 … f(xN|a)dxN 

We define Likelihood L(a) the joint probability 

The best estimate of a is the value that maximizes the probability of each measurement,  
hence that maximizes the likelihood: 

                               L(a) = maximum 

L(a) =
NY

i=1

f(xi|a)

dL(a)

da
= 0

simultaneously for each i
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Maximum likelihood
Remarks: 
The Likelihood is a sampling function, ie. a random variable, not the pdf of the true 
parameter a. If that was the case we would just compute expectation value of a  
(and all its moments) 

The Likelihood has to be normalized for every value of a 

The likelihood is not a probability: it’s a product of probability density functions: 
—>the probability would be = L  Πdxi 

For a given sample or a given set of measurements xi the Likelihood function L=L(a) Πdxi  
is the probability to observe a certain set of data points  {xi} given the parameter  “a”. 

In L=L(a), “a” is the “parameter of interest” (p.o.i.), but L could depend on several other 
parameters ϑ: L(a| ϑ) 

Notation a is the maximum likelihood estimator (MLE) of a 

Notation: in general we will neglect the explicit dependence on the data points 

We can be interested in several p.o.i. at the same time: L(a).  
In this case we will maximize simultaneously: 

@L(ai)

@ai
= 0

^
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Maximum likelihood
Practicalities: 

For numerical reasons we will work with -ln L(a). L(a) is the product of numbers in [0,1] 
(pdf). Multiplying several of those will reach the numerical precision of the computer. 
Instead of multiplying f(xi) we will sum ln f(xi)

l(a) = lnL(a) =
X

i

ln f(xi|a)

We will minimize -L (negative L) instead of maximizing L, because the numerical libraries 
are typically written to find minima instead of maxima
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Example: lifetime/exponential fit

f(t) =
1

⌧
e�

t
⌧

Write the log-likelihood

Find the derivative:

Set it to zero and solve for the lifetime:

which is simply the average of the 
measured proper decay times

t = proper decay time  
τ = lifetime

Compute the maximum Likelihood estimator for an exponential distribution  
(use ln L)

NB: the bias decreases as 1/n. The ML estimator is asymptotically unbiased.  
General property: likelihood estimators are unbiased.
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Example: Gaussian pdf

Take a Gaussian pdf: 

72 CHAPTER 6. PARAMETER ESTIMATION - LIKELIHOOD

Hence we get the mean as an ML estimator, which is what one expects. Furthermore it can
be shown that the ML estimator is unbiased. 2

Example Gaussian distribution. The Gaussian probability distribution function is given
by

f(xi;µ) =
1p
2⇡

1

�i
· e�

1
2

⇣
xi�µ

�i

⌘2

. (6.4.19)

To get a ML estimator for the mean µ̂ we construct again the log-likelihood function:

l(µ) = lnL(µ) = ln
Y

i

f(ti;µ) =
X

i

ln f(ti;µ) =
X

i

 
ln

1p
2⇡

� ln�i �
1

2

✓
xi � µ

�i

◆2
!

(6.4.20)
Di↵erentiating with respect to µ, the determination of the maximum yields:

dl(µ)

dµ
=

d

dµ

X

i

�1

2

✓
xi � µ

�i

◆2

=
X

i

xi � µ

�
2
i

= 0 (6.4.21)

µ̂ =

P
i
xi/�

2
i

1/�2
i

(6.4.22)

Which is the weighted mean of the sample {xi} and it simplifies to µ̂ = 1
n

P
i
xi if all the

xi have the same �i. In this case (�i = � 8i) we can use the likelihood method to get an
estimate for the variance �̂

2. The ML method yields

�̂
2 =

1

n

X

i

(xi � µ̂)2. (6.4.23)

which is, as already discussed, asymptotically unbiased. 2

Example Poisson distribution: Consider a set of data {ri} which we assume to be dis-
tributed according to a poisson with parameter �. We use the ML method to find an estimator
for �. The log-likelihood function for the Poisson distribution is given by

l(�) =
X

i

ln
�
ri

ri!
e
�� =

X

i

ln�ri � n��
X

i

ln ri! = ln� ·
X

i

ri � n��
X

i

ln ri! (6.4.24)

Di↵erentiating l(�) w.r.t. � and equating it to zero gives as estimator for the mean of a
Poisson distribution �̂ = 1

n

P
i
ri, which is again the mean of the sample. 2

Example Binomial distribution: As for the Poisson case above, consider a set of data
{si, ri} (for the measurement i we obtain si successes and ri failures, ni = si + ri) which
we assume to be distributed according to a binomial distribution B(p) =

�
n

s

�
p
s(1� p)r with

s+ r = n. We use the ML method to find an estimator for p. The log-likelihood function for
the binomial distribution is given by:

l(p) = lnB(p) = ln

✓
n

s

◆
+ s ln p+ r ln(1� p) (6.4.25)

The requirement @l(p)
@p

= 0 yields s

p
� r

1�p
= 0 and hence p̂ = s/n, which is the fraction of

successes given n trials. 2

The likelihood function for the estimator of the mean is:
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n
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i
xi if all the

xi have the same �i. In this case (�i = � 8i) we can use the likelihood method to get an
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X

i
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which is, as already discussed, asymptotically unbiased. 2

Example Poisson distribution: Consider a set of data {ri} which we assume to be dis-
tributed according to a poisson with parameter �. We use the ML method to find an estimator
for �. The log-likelihood function for the Poisson distribution is given by
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Di↵erentiating l(�) w.r.t. � and equating it to zero gives as estimator for the mean of a
Poisson distribution �̂ = 1

n

P
i
ri, which is again the mean of the sample. 2

Example Binomial distribution: As for the Poisson case above, consider a set of data
{si, ri} (for the measurement i we obtain si successes and ri failures, ni = si + ri) which
we assume to be distributed according to a binomial distribution B(p) =

�
n

s

�
p
s(1� p)r with

s+ r = n. We use the ML method to find an estimator for p. The log-likelihood function for
the binomial distribution is given by:

l(p) = lnB(p) = ln

✓
n

s

◆
+ s ln p+ r ln(1� p) (6.4.25)

The requirement @l(p)
@p

= 0 yields s

p
� r

1�p
= 0 and hence p̂ = s/n, which is the fraction of

successes given n trials. 2

which maximized gives:

The estimator of the mean is the weighted mean of the sample with weights 1/σi2
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Hence we get the mean as an ML estimator, which is what one expects. Furthermore it can
be shown that the ML estimator is unbiased. 2

Example Gaussian distribution. The Gaussian probability distribution function is given
by

f(xi;µ) =
1p
2⇡

1

�i
· e�

1
2

⇣
xi�µ
�i

⌘2

. (1.4.19)

To get a ML estimator for the mean µ̂ we construct again the log-likelihood function:

l(µ) = lnL(µ) = ln
Y

i

f(ti;µ) =
X

i

ln f(ti;µ) =
X

i
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1

2
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!
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Di↵erentiating with respect to µ, the determination of the maximum yields:

dl(µ)
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=

d
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X
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�1

2

✓
xi � µ

�i

◆2

=
X
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xi � µ

�
2
i

= 0 (1.4.21)

µ̂ =

P
i xi/�

2
iP

i 1/�
2
i

(1.4.22)

Which is the weighted mean of the sample {xi} and it simplifies to µ̂ = 1
n

P
i xi if all the

xi have the same �i. In this case (�i = � 8i) we can use the likelihood method to get an
estimate for the variance �̂

2. The ML method yields

�̂
2 =

1

n

X
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(xi � µ̂)2. (1.4.23)

which is, as already discussed, asymptotically unbiased. 2
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n

P
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{si, ri} (for the measurement i we obtain si successes and ri failures, ni = si + ri) which
we assume to be distributed according to a binomial distribution B(p) =

�n
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�
p
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the binomial distribution is given by:

l(p) = lnB(p) = ln

✓
n

s

◆
+ s ln p+ r ln(1� p) (1.4.25)

The requirement @l(p)
@p = 0 yields s

p � r
1�p = 0 and hence p̂ = s/n, which is the fraction of

successes given n trials. 2
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Example: Poisson pdf
Take a Poisson distribution with expected mean λ. The likelihood estimator of λ is given by:

72 CHAPTER 6. PARAMETER ESTIMATION - LIKELIHOOD
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Example Gaussian distribution. The Gaussian probability distribution function is given
by

f(xi;µ) =
1p
2⇡

1

�i
· e�

1
2

⇣
xi�µ

�i

⌘2

. (6.4.19)
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Which is the weighted mean of the sample {xi} and it simplifies to µ̂ = 1
n

P
i
xi if all the

xi have the same �i. In this case (�i = � 8i) we can use the likelihood method to get an
estimate for the variance �̂

2. The ML method yields

�̂
2 =

1

n

X
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which is, as already discussed, asymptotically unbiased. 2

Example Poisson distribution: Consider a set of data {ri} which we assume to be dis-
tributed according to a poisson with parameter �. We use the ML method to find an estimator
for �. The log-likelihood function for the Poisson distribution is given by

l(�) =
X
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ln
�
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ri!
e
�� =

X
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X

i

ln ri! = ln� ·
X

i
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Di↵erentiating l(�) w.r.t. � and equating it to zero gives as estimator for the mean of a
Poisson distribution �̂ = 1

n

P
i
ri, which is again the mean of the sample. 2

Example Binomial distribution: As for the Poisson case above, consider a set of data
{si, ri} (for the measurement i we obtain si successes and ri failures, ni = si + ri) which
we assume to be distributed according to a binomial distribution B(p) =

�
n

s

�
p
s(1� p)r with

s+ r = n. We use the ML method to find an estimator for p. The log-likelihood function for
the binomial distribution is given by:

l(p) = lnB(p) = ln

✓
n

s

◆
+ s ln p+ r ln(1� p) (6.4.25)

The requirement @l(p)
@p

= 0 yields s

p
� r

1�p
= 0 and hence p̂ = s/n, which is the fraction of

successes given n trials. 2

Taking the derivative and setting it to zero provides the MLE for λ:
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P
i
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xi have the same �i. In this case (�i = � 8i) we can use the likelihood method to get an
estimate for the variance �̂
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�̂
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which is, as already discussed, asymptotically unbiased. 2

Example Poisson distribution: Consider a set of data {ri} which we assume to be dis-
tributed according to a poisson with parameter �. We use the ML method to find an estimator
for �. The log-likelihood function for the Poisson distribution is given by
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Di↵erentiating l(�) w.r.t. � and equating it to zero gives as estimator for the mean of a
Poisson distribution �̂ = 1

n

P
i
ri, which is again the mean of the sample. 2

Example Binomial distribution: As for the Poisson case above, consider a set of data
{si, ri} (for the measurement i we obtain si successes and ri failures, ni = si + ri) which
we assume to be distributed according to a binomial distribution B(p) =

�
n

s

�
p
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s+ r = n. We use the ML method to find an estimator for p. The log-likelihood function for
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✓
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◆
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The requirement @l(p)
@p

= 0 yields s

p
� r

1�p
= 0 and hence p̂ = s/n, which is the fraction of

successes given n trials. 2

Which is the mean of the measurements
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MLE uncertainty
Expand around the maximum of the Likelihood

In the neighbour of the maximum we can approximate the function with a gaussian. 
Comparing the exponents:

ie: Variance(â)=inverse of the 2nd derivative 
of the Log-Likelihood

If  L is Gaussian, then Log-Likelihood is a parabola (in general true for N—>∞).  
The value of F(a)= –ln L around  minimum  at a = â ± n·σ is: (replace in the expansion) 

76 CHAPTER 6. PARAMETER ESTIMATION - LIKELIHOOD

This inequality means that there is a lower bound on the variance of the estimator; i.e. given
a certain amount of information (a data set) we can never find a estimator with lower variance
than this bound. To reduce the bound we need to get more information. For an unbiased
estimator the bound becomes V (✓̂) = 1/I(✓).
Now that we know what is the minimum variance of an estimator we can also define its
e�ciency as

✏(✓̂) =
Vmin(✓̂)

V (✓̂)
 1 (6.5.46)

which for an unbiased estimator is

✏(✓̂) =
1

V (✓̂)I(✓)
 1 (6.5.47)

An estimator with ✏ = 1 is called e�cient. It is not always possible to find an e�cient
estimator, but it can be shown that:

• if an e�cient estimator for a given problem exist, it will be found using the ML method

• ML estimators are e�cient in the large sample limit.

6.6 Uncertainty for ML estimators

Let’s take the simplest case of a likelihood with only one parameter in the large sample limit
(i.e. the estimator is e�cient and the RCF is valid as an equality). Expand its NLL function
around ✓ = ✓̂:

F (✓) = � lnL(✓) = F (✓̂) +
1

2

d
2
F

d✓2
|
✓=✓̂

(✓ � ✓̂)2 + · · · (6.6.48)

(the first derivative vanishes by construction because of ML principle), then:

L(✓) ⇠ const · exp
✓
�1

2
· d

2
F

d✓2
|
✓=✓̂

(✓ � ✓̂)2
◆

:= const · exp
 
�(✓ � ✓̂)2

2�2

!
. (6.6.49)

The likelihood can be approximated by a Gaussian in the neighborhood of its maximum and
by comparing the exponents we find:

�
2(✓̂) =

1

d2F/d✓2|
✓=✓̂

=
1

I(✓̂)
. (6.6.50)

The variance is the inverse of the second derivative of the log-likelihood at ✓ = ✓̂, i.e. the
inverse of the information.
The di↵erence F (✓)� F (✓̂) calculated at ✓ = ✓̂ ± n · �(✓̂), using the equations above is:

F (✓̂ ± n�)� F (✓̂) =
1

2

d
2
F

d✓2
|
✓=✓̂

(✓̂ ± n� � ✓̂)2 =
1

2

1

�2
(n�)2 =

1

2
n
2 (6.6.51)

This enables us to find the uncertainty of an estimator ✓̂ easily be looking at the graph for
the log-likelihood function. When the log-likelihood has decreased from the maximum by 0.5
you are at ±1�, by 2 you are at ±2�, by 4.5 you are at ±3� and so on.
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a certain amount of information (a data set) we can never find a estimator with lower variance
than this bound. To reduce the bound we need to get more information. For an unbiased
estimator the bound becomes V (✓̂) = 1/I(✓).
Now that we know what is the minimum variance of an estimator we can also define its
e�ciency as

✏(✓̂) =
Vmin(✓̂)

V (✓̂)
 1 (6.5.46)

which for an unbiased estimator is

✏(✓̂) =
1

V (✓̂)I(✓)
 1 (6.5.47)

An estimator with ✏ = 1 is called e�cient. It is not always possible to find an e�cient
estimator, but it can be shown that:

• if an e�cient estimator for a given problem exist, it will be found using the ML method

• ML estimators are e�cient in the large sample limit.

6.6 Uncertainty for ML estimators

Let’s take the simplest case of a likelihood with only one parameter in the large sample limit
(i.e. the estimator is e�cient and the RCF is valid as an equality). Expand its NLL function
around ✓ = ✓̂:

F (✓) = � lnL(✓) = F (✓̂) +
1

2

d
2
F

d✓2
|
✓=✓̂

(✓ � ✓̂)2 + · · · (6.6.48)

(the first derivative vanishes by construction because of ML principle), then:

L(✓) ⇠ const · exp
✓
�1

2
· d

2
F

d✓2
|
✓=✓̂

(✓ � ✓̂)2
◆

:= const · exp
 
�(✓ � ✓̂)2

2�2

!
. (6.6.49)

The likelihood can be approximated by a Gaussian in the neighborhood of its maximum and
by comparing the exponents we find:

�
2(✓̂) =

1

d2F/d✓2|
✓=✓̂

=
1

I(✓̂)
. (6.6.50)

The variance is the inverse of the second derivative of the log-likelihood at ✓ = ✓̂, i.e. the
inverse of the information.
The di↵erence F (✓)� F (✓̂) calculated at ✓ = ✓̂ ± n · �(✓̂), using the equations above is:

F (✓̂ ± n�)� F (✓̂) =
1

2

d
2
F

d✓2
|
✓=✓̂

(✓̂ ± n� � ✓̂)2 =
1

2

1

�2
(n�)2 =

1

2
n
2 (6.6.51)

This enables us to find the uncertainty of an estimator ✓̂ easily be looking at the graph for
the log-likelihood function. When the log-likelihood has decreased from the maximum by 0.5
you are at ±1�, by 2 you are at ±2�, by 4.5 you are at ±3� and so on.
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■

This means that Log-Likelihood decreases  
for ±1σ by ±0.5 
for ±2σ by ±2.0 
for ±3σ by ±4.5  
        from its maximum 

MLE uncertainty
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If the log-Likelihood is not parabolic, typical case for low statistics samples where 
CLT does not apply,  we can compute the uncertainty numerically and  obtain 
asymmetric uncertainties 
(change a by nσ from its ML-estimate until  ln(Lmax) decreases by n2/2 )

a

■

max maxlnl L=  

max
1

ln
2

L − 
σa+

σa-

l = ln L

Best estimates for error of a are : σa- and σa+

Asymmetric uncertainties

MLE uncertainty

±1σ by ±0.5 
±2σ by ±2.0 
±3σ by ±4.5 
from the maximum 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“The precision of the estimation should be greater if we have more information.” 

The definition of Fisher information

Fisher information

76 CHAPTER 6. PARAMETER ESTIMATION - LIKELIHOOD

This inequality means that there is a lower bound on the variance of the estimator; i.e. given
a certain amount of information (a data set) we can never find a estimator with lower variance
than this bound. To reduce the bound we need to get more information. For an unbiased
estimator the bound becomes V (✓̂) = 1/I(✓).
Now that we know what is the minimum variance of an estimator we can also define its
e�ciency as

✏(✓̂) =
Vmin(✓̂)

V (✓̂)
 1 (6.5.46)

which for an unbiased estimator is

✏(✓̂) =
1

V (✓̂)I(✓)
 1 (6.5.47)

An estimator with ✏ = 1 is called e�cient. It is not always possible to find an e�cient
estimator, but it can be shown that:

• if an e�cient estimator for a given problem exist, it will be found using the ML method

• ML estimators are e�cient in the large sample limit.

6.6 Uncertainty for ML estimators

Let’s take the simplest case of a likelihood with only one parameter in the large sample limit
(i.e. the estimator is e�cient and the RCF is valid as an equality). Expand its NLL function
around ✓ = ✓̂:

F (✓) = � lnL(✓) = F (✓̂) +
1

2

d
2
F

d✓2
|
✓=✓̂

(✓ � ✓̂)2 + · · · (6.6.48)

(the first derivative vanishes by construction because of ML principle), then:

L(✓) ⇠ const · exp
✓
�1

2
· d

2
F

d✓2
|
✓=✓̂

(✓ � ✓̂)2
◆

:= const · exp
 
�(✓ � ✓̂)2

2�2

!
. (6.6.49)

The likelihood can be approximated by a Gaussian in the neighborhood of its maximum and
by comparing the exponents we find:

�
2(✓̂) =

1

d2F/d✓2|
✓=✓̂

=
1

I(✓̂)
. (6.6.50)

The variance is the inverse of the second derivative of the log-likelihood at ✓ = ✓̂, i.e. the
inverse of the information.
The di↵erence F (✓)� F (✓̂) calculated at ✓ = ✓̂ ± n · �(✓̂), using the equations above is:

F (✓̂ ± n�)� F (✓̂) =
1

2

d
2
F

d✓2
|
✓=✓̂

(✓̂ ± n� � ✓̂)2 =
1

2

1

�2
(n�)2 =

1

2
n
2 (6.6.51)

This enables us to find the uncertainty of an estimator ✓̂ easily be looking at the graph for
the log-likelihood function. When the log-likelihood has decreased from the maximum by 0.5
you are at ±1�, by 2 you are at ±2�, by 4.5 you are at ±3� and so on.

The variance is the inverse of the second derivative of the likelihood,  
i.e. the inverse of the information.

To reduce the uncertainty of a MLE we need to increase the information, 
but that is limited by the “minimum variance bound” (—> see backup slides)
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Extended MLE
When the number of events is unknown, we can fit for it. 

We need to multiply “extend” the Likelihood by a Poisson term modelling the probability 
to obtain n observed events when v are expected:

78 CHAPTER 6. PARAMETER ESTIMATION - LIKELIHOOD

the minimization of the NLL at each variation of the parameters you need to loop over all
data points) and it might be practical to bin the data and represent it in histograms. We
assume that the random variables xi are distributed according to a p.d.f. f(x; ✓) and that
the expectation value ⌫ = (⌫1, . . . , ⌫N ) for the number of entries per bin i is given by

⌫i =

Z
x
max

i

x
min

i

f(xi; ✓)dx. (6.7.57)

The boundaries of bin i are denoted by x
min

i
and x

max

i
, respectively. We can now think

of the histogram as some sort of single measurement of a N -dimensional random vector for
which the combined probability density is given by a multinomial distribution. This means
we are asking for the joint probability to observe ni entries in bin i when the expected is ⌫i.
Normalizing by ntot =

P
ni we get:

fcomb(n; ⌫) =
ntot!

n1! · · ·nN !

✓
⌫1

ntot

◆
n1

· · ·
✓

⌫N

ntot

◆
nN

(6.7.58)

Remember that the dependence on the parameter ✓ is embedded in the ⌫i as in Eq. 6.7.57.
The negative logarithm of the joint probability yields now the binned NLL function (all
uninteresting terms are dropped):

l(✓) =
NX

i=1

ln ⌫i(✓)
ni (6.7.59)

The estimations for ✓̂ are found as in the unbinned case by minimizing the NLL.
Taking the number of bins N ! 1 brings back the unbinned likelihood case. Provided that
the expected number of entries in a bin is not zero (⌫i(✓) > 0) the binned ML is usable even
when some bins have zero entries observed (in contrast with the least square method that we
will discussed in the next chapter).

6.8 Extended Maximum Likelihood Method

We applied up to now the ML to a fixed number of events N . We can easily extend the ML to
the case where the total number of events is itself not known and it is treated as a parameter
to be estimated. To do this we can multiply the previous expression of the likelihood by a
Poisson p.d.f. which represents the probability to observe n events when the expected number
of events is ⌫:

L(x; ✓) =
nY

i=1

f(xi; ✓) ! LE(x; ✓, ⌫) =
e
�⌫

⌫
n

n!

nY

i=1

f(xi; ✓) (6.8.60)

and

l(x; ✓) =
nX

i=1

ln f(x; ✓) ! lE(x; ✓, ⌫) =
nX

i=1

ln ⌫f(x; ✓)� ⌫ + const (6.8.61)

where ln ⌫f(x; ✓) is now normalized to ⌫ instead of 1 and where we dropped the constant
term lnn! which is irrelevant in the minimization. This new likelihood is called the extended-
maximum-likelihood or EML.
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the minimization of the NLL at each variation of the parameters you need to loop over all
data points) and it might be practical to bin the data and represent it in histograms. We
assume that the random variables xi are distributed according to a p.d.f. f(x; ✓) and that
the expectation value ⌫ = (⌫1, . . . , ⌫N ) for the number of entries per bin i is given by

⌫i =

Z
x
max

i

x
min

i

f(xi; ✓)dx. (6.7.57)

The boundaries of bin i are denoted by x
min

i
and x

max

i
, respectively. We can now think

of the histogram as some sort of single measurement of a N -dimensional random vector for
which the combined probability density is given by a multinomial distribution. This means
we are asking for the joint probability to observe ni entries in bin i when the expected is ⌫i.
Normalizing by ntot =

P
ni we get:

fcomb(n; ⌫) =
ntot!

n1! · · ·nN !

✓
⌫1

ntot

◆
n1

· · ·
✓

⌫N

ntot

◆
nN

(6.7.58)

Remember that the dependence on the parameter ✓ is embedded in the ⌫i as in Eq. 6.7.57.
The negative logarithm of the joint probability yields now the binned NLL function (all
uninteresting terms are dropped):

l(✓) =
NX

i=1

ln ⌫i(✓)
ni (6.7.59)

The estimations for ✓̂ are found as in the unbinned case by minimizing the NLL.
Taking the number of bins N ! 1 brings back the unbinned likelihood case. Provided that
the expected number of entries in a bin is not zero (⌫i(✓) > 0) the binned ML is usable even
when some bins have zero entries observed (in contrast with the least square method that we
will discussed in the next chapter).

6.8 Extended Maximum Likelihood Method

We applied up to now the ML to a fixed number of events N . We can easily extend the ML to
the case where the total number of events is itself not known and it is treated as a parameter
to be estimated. To do this we can multiply the previous expression of the likelihood by a
Poisson p.d.f. which represents the probability to observe n events when the expected number
of events is ⌫:

L(x; ✓) =
nY

i=1

f(xi; ✓) ! LE(x; ✓, ⌫) =
e
�⌫

⌫
n

n!

nY

i=1

f(xi; ✓) (6.8.60)

and

l(x; ✓) =
nX

i=1

ln f(x; ✓) ! lE(x; ✓, ⌫) =
nX

i=1

ln ⌫f(x; ✓)� ⌫ + const (6.8.61)

where ln ⌫f(x; ✓) is now normalized to ⌫ instead of 1 and where we dropped the constant
term lnn! which is irrelevant in the minimization. This new likelihood is called the extended-
maximum-likelihood or EML.

and the log-Likelihood becomes:
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Binned MLE
The likelihood considered so fa is called “unbinned”: we use the maximum information 
by using each single point in the dataset. 

This can be time consuming for large datasets (each time you compute the NLL for a 
value of ϑ you need to loop over all points)   

The expected number of events in a bin [ximin, ximax] is given by the integral of the pdf

78 CHAPTER 6. PARAMETER ESTIMATION - LIKELIHOOD

the minimization of the NLL at each variation of the parameters you need to loop over all
data points) and it might be practical to bin the data and represent it in histograms. We
assume that the random variables xi are distributed according to a p.d.f. f(x; ✓) and that
the expectation value ⌫ = (⌫1, . . . , ⌫N ) for the number of entries per bin i is given by

⌫i =

Z
x
max

i

x
min

i

f(xi; ✓)dx. (6.7.57)

The boundaries of bin i are denoted by x
min

i
and x

max

i
, respectively. We can now think

of the histogram as some sort of single measurement of a N -dimensional random vector for
which the combined probability density is given by a multinomial distribution. This means
we are asking for the joint probability to observe ni entries in bin i when the expected is ⌫i.
Normalizing by ntot =

P
ni we get:

fcomb(n; ⌫) =
ntot!

n1! · · ·nN !
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⌫1

ntot
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n1

· · ·
✓

⌫N

ntot
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nN

(6.7.58)

Remember that the dependence on the parameter ✓ is embedded in the ⌫i as in Eq. 6.7.57.
The negative logarithm of the joint probability yields now the binned NLL function (all
uninteresting terms are dropped):

l(✓) =
NX

i=1

ln ⌫i(✓)
ni (6.7.59)

The estimations for ✓̂ are found as in the unbinned case by minimizing the NLL.
Taking the number of bins N ! 1 brings back the unbinned likelihood case. Provided that
the expected number of entries in a bin is not zero (⌫i(✓) > 0) the binned ML is usable even
when some bins have zero entries observed (in contrast with the least square method that we
will discussed in the next chapter).

6.8 Extended Maximum Likelihood Method

We applied up to now the ML to a fixed number of events N . We can easily extend the ML to
the case where the total number of events is itself not known and it is treated as a parameter
to be estimated. To do this we can multiply the previous expression of the likelihood by a
Poisson p.d.f. which represents the probability to observe n events when the expected number
of events is ⌫:

L(x; ✓) =
nY

i=1

f(xi; ✓) ! LE(x; ✓, ⌫) =
e
�⌫

⌫
n

n!

nY

i=1

f(xi; ✓) (6.8.60)

and

l(x; ✓) =
nX

i=1

ln f(x; ✓) ! lE(x; ✓, ⌫) =
nX

i=1

ln ⌫f(x; ✓)� ⌫ + const (6.8.61)

where ln ⌫f(x; ✓) is now normalized to ⌫ instead of 1 and where we dropped the constant
term lnn! which is irrelevant in the minimization. This new likelihood is called the extended-
maximum-likelihood or EML.
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the minimization of the NLL at each variation of the parameters you need to loop over all
data points) and it might be practical to bin the data and represent it in histograms. We
assume that the random variables xi are distributed according to a p.d.f. f(x; ✓) and that
the expectation value ⌫ = (⌫1, . . . , ⌫N ) for the number of entries per bin i is given by

⌫i =
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max
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min
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, respectively. We can now think

of the histogram as some sort of single measurement of a N -dimensional random vector for
which the combined probability density is given by a multinomial distribution. This means
we are asking for the joint probability to observe ni entries in bin i when the expected is ⌫i.
Normalizing by ntot =

P
ni we get:
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n1! · · ·nN !
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⌫1
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· · ·
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(6.7.58)

Remember that the dependence on the parameter ✓ is embedded in the ⌫i as in Eq. 6.7.57.
The negative logarithm of the joint probability yields now the binned NLL function (all
uninteresting terms are dropped):

l(✓) =
NX

i=1

ln ⌫i(✓)
ni (6.7.59)

The estimations for ✓̂ are found as in the unbinned case by minimizing the NLL.
Taking the number of bins N ! 1 brings back the unbinned likelihood case. Provided that
the expected number of entries in a bin is not zero (⌫i(✓) > 0) the binned ML is usable even
when some bins have zero entries observed (in contrast with the least square method that we
will discussed in the next chapter).

6.8 Extended Maximum Likelihood Method

We applied up to now the ML to a fixed number of events N . We can easily extend the ML to
the case where the total number of events is itself not known and it is treated as a parameter
to be estimated. To do this we can multiply the previous expression of the likelihood by a
Poisson p.d.f. which represents the probability to observe n events when the expected number
of events is ⌫:

L(x; ✓) =
nY

i=1

f(xi; ✓) ! LE(x; ✓, ⌫) =
e
�⌫

⌫
n

n!

nY

i=1

f(xi; ✓) (6.8.60)

and

l(x; ✓) =
nX

i=1

ln f(x; ✓) ! lE(x; ✓, ⌫) =
nX

i=1

ln ⌫f(x; ✓)� ⌫ + const (6.8.61)

where ln ⌫f(x; ✓) is now normalized to ⌫ instead of 1 and where we dropped the constant
term lnn! which is irrelevant in the minimization. This new likelihood is called the extended-
maximum-likelihood or EML.

the histogram is an N-dimensional random vector described by a multinomial pdf. 
(generalization of the binomial distribution with k-types of outcomes instead of only 0 / 1)
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the minimization of the NLL at each variation of the parameters you need to loop over all
data points) and it might be practical to bin the data and represent it in histograms. We
assume that the random variables xi are distributed according to a p.d.f. f(x; ✓) and that
the expectation value ⌫ = (⌫1, . . . , ⌫N ) for the number of entries per bin i is given by

⌫i =

Z
x
max

i

x
min

i

f(xi; ✓)dx. (6.7.57)

The boundaries of bin i are denoted by x
min

i
and x

max

i
, respectively. We can now think

of the histogram as some sort of single measurement of a N -dimensional random vector for
which the combined probability density is given by a multinomial distribution. This means
we are asking for the joint probability to observe ni entries in bin i when the expected is ⌫i.
Normalizing by ntot =

P
ni we get:

fcomb(n; ⌫) =
ntot!

n1! · · ·nN !

✓
⌫1

ntot

◆
n1

· · ·
✓

⌫N
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(6.7.58)

Remember that the dependence on the parameter ✓ is embedded in the ⌫i as in Eq. 6.7.57.
The negative logarithm of the joint probability yields now the binned NLL function (all
uninteresting terms are dropped):

l(✓) =
NX

i=1

ln ⌫i(✓)
ni (6.7.59)

The estimations for ✓̂ are found as in the unbinned case by minimizing the NLL.
Taking the number of bins N ! 1 brings back the unbinned likelihood case. Provided that
the expected number of entries in a bin is not zero (⌫i(✓) > 0) the binned ML is usable even
when some bins have zero entries observed (in contrast with the least square method that we
will discussed in the next chapter).

6.8 Extended Maximum Likelihood Method

We applied up to now the ML to a fixed number of events N . We can easily extend the ML to
the case where the total number of events is itself not known and it is treated as a parameter
to be estimated. To do this we can multiply the previous expression of the likelihood by a
Poisson p.d.f. which represents the probability to observe n events when the expected number
of events is ⌫:

L(x; ✓) =
nY

i=1

f(xi; ✓) ! LE(x; ✓, ⌫) =
e
�⌫

⌫
n

n!

nY

i=1

f(xi; ✓) (6.8.60)

and

l(x; ✓) =
nX

i=1

ln f(x; ✓) ! lE(x; ✓, ⌫) =
nX

i=1

ln ⌫f(x; ✓)� ⌫ + const (6.8.61)

where ln ⌫f(x; ✓) is now normalized to ⌫ instead of 1 and where we dropped the constant
term lnn! which is irrelevant in the minimization. This new likelihood is called the extended-
maximum-likelihood or EML.

NB: the dependence on ϑ is in the model of the expected number of events vi=vi(ϑ)  
(ntot and the observed number of events per bin do not depend on ϑ !)

P (r1, ..., rk;n, p1, ..., pk) =

✓
n!

r1!...rk!

◆
pr11 ...prkk

Assuming the total number of events is given Ntot :
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Binned MLE

The binned log-Likelihood is written as:
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the minimization of the NLL at each variation of the parameters you need to loop over all
data points) and it might be practical to bin the data and represent it in histograms. We
assume that the random variables xi are distributed according to a p.d.f. f(x; ✓) and that
the expectation value ⌫ = (⌫1, . . . , ⌫N ) for the number of entries per bin i is given by

⌫i =

Z
x
max
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min
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f(xi; ✓)dx. (6.7.57)

The boundaries of bin i are denoted by x
min

i
and x
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i
, respectively. We can now think

of the histogram as some sort of single measurement of a N -dimensional random vector for
which the combined probability density is given by a multinomial distribution. This means
we are asking for the joint probability to observe ni entries in bin i when the expected is ⌫i.
Normalizing by ntot =

P
ni we get:
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Remember that the dependence on the parameter ✓ is embedded in the ⌫i as in Eq. 6.7.57.
The negative logarithm of the joint probability yields now the binned NLL function (all
uninteresting terms are dropped):

l(✓) =
NX

i=1

ln ⌫i(✓)
ni (6.7.59)

The estimations for ✓̂ are found as in the unbinned case by minimizing the NLL.
Taking the number of bins N ! 1 brings back the unbinned likelihood case. Provided that
the expected number of entries in a bin is not zero (⌫i(✓) > 0) the binned ML is usable even
when some bins have zero entries observed (in contrast with the least square method that we
will discussed in the next chapter).

6.8 Extended Maximum Likelihood Method

We applied up to now the ML to a fixed number of events N . We can easily extend the ML to
the case where the total number of events is itself not known and it is treated as a parameter
to be estimated. To do this we can multiply the previous expression of the likelihood by a
Poisson p.d.f. which represents the probability to observe n events when the expected number
of events is ⌫:

L(x; ✓) =
nY

i=1

f(xi; ✓) ! LE(x; ✓, ⌫) =
e
�⌫

⌫
n

n!

nY

i=1

f(xi; ✓) (6.8.60)

and

l(x; ✓) =
nX

i=1

ln f(x; ✓) ! lE(x; ✓, ⌫) =
nX

i=1

ln ⌫f(x; ✓)� ⌫ + const (6.8.61)

where ln ⌫f(x; ✓) is now normalized to ⌫ instead of 1 and where we dropped the constant
term lnn! which is irrelevant in the minimization. This new likelihood is called the extended-
maximum-likelihood or EML.

Remarks: 
- the binned MLE reduces to the unbinned case for large number of bins  

(when each bin contains one entry) 
- contrary to the least square method, there is no problem with bins with zero entries 

(ni = 0) —> provided the expected number of events vi >0  (zero or negative value 
of the pdf will produce infinities)
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Combining measurements
Different measurements of the same parameter ϑ can be combined using the ML principle. 
The idea is to maximize the likelihood of each of the measurement for both experiments, 
i.e. simply multiply the two likelihoods:

6.9. COMBINATION OF MEASUREMENTS WITH THE ML METHOD 79

We can now distinguish two cases:
Case 1): the parameter ⌫ depends on ✓. The EML log-likelihood function can be written as

lnL(✓) = n ln ⌫(✓)� ⌫(✓) +
nX

i=1

ln f(xi; ✓) (6.8.62)

= �⌫(✓) +
nX

i=1

ln(⌫(✓)f(xi; ✓)) (6.8.63)

where the additive terms not depending on ✓ are dropped. By taking the Poisson term into
consideration in the EML function, the resulting variance is usually smaller, because when
estimating ✓̂, we use the extra information brought in by n.

Case 2): ⌫ does not dependent on ✓. Di↵erentiating Eq. 6.8.61 and equating it to zero
yields as estimator simply ⌫̂ = n, as expected. We also obtain as estimators the same ✓̂i of
the standard ML. Nevertheless the variance of the ✓̂i would be bigger because now not only
✓̂ but also n is a source of statistical uncertainties.

6.9 Combination of Measurements with the ML Method

Suppose we have di↵erent measurements of the same parameter ✓ by di↵erent experiments
and you want to combine them using the ML method. More precisely, suppose we have a
set of n measured data points with probability density f(x; ✓) from one experiment and a
second set with m measured data points yi, which are distributed according to a probability
density g(y; ✓) from a second experiment. The two probability densities f(x; ✓) and g(y; ✓)
can have di↵erent functional forms, because of the di↵erent experimental techniques used to
determine ✓. As an example you can think of ✓ being the mass of a particle and f and g the
results of two experiments or the results of the mass measurement in two decay modes.
The two experiments together can be interpreted as one single experiment and the resulting
likelihood is just the product of:

L(✓) =
nY

i=1

f(xi; ✓) ·
mY

i=1

g(yi; ✓) = Lx(✓) · Ly(✓) (6.9.64)

This expression becomes clear if you think back at the definition of likelihood. The likelihood
is based on the conditional probability that, given a parameter ✓ we observe the data set we
have. The product above, just extends the conditional probability further to a larger data
set comprising two experiments.
This way of combining di↵erent measurements is only valid in the case where the two like-
lihood are totally uncorrelated, i.e. the two experiments do not share any common source
of uncertainty. If that is not the case then the parameters correlation has to be included in
the likelihoods expressions. A real life example can be found in the combination of the Higgs
mass measurement performed by the ATLAS and CMS collaborations [47].

experiment 
1

experiment 
2

When combining experiments in this way it is important to look for possible correlations 
among the parameters of the likelihoods
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Fit with constraints

In general the constraints can be implemented as Lagrange multipliers  
(you have encountered this when studying implicit equations                )

80 CHAPTER 6. PARAMETER ESTIMATION - LIKELIHOOD

6.10 Constraining parameters

It often happens that the parameters to be estimated are constrained, for instance by a phys-
ical reason (e.g. mass > 0) or by other measurements (e.g. uncertainty on the energy scale).
Imposing constraints always implies adding some information, and therefore the errors of the
parameters are in general reduced.
The most e�cient method to deal with a constraint is to rewrite the parameters such that
the constraints are embedded in their definition.

Example Take ✓i as fractions subjected to the constraint that they should add to 1:

0  ✓  1
nX

i=1

✓i = 1.

Then we can redefine the parameters as:

✓1 =  1

✓2 = (1�  1) 2

✓3 = (1�  1)(1�  2) 3

. . .

✓k�1 = (1�  1)(1�  2) . . . (1�  k�2) k�1

✓k = (1�  1)(1�  2) . . . (1�  k�1)

where the  i 8i are bounded to be between 0 and 1. 2

The most general way to express a constraint is through an implicit equation (or in gen-
eral a set of equations) of the form: ~g(~✓) = 0 and the general method to implement them is
to use the Lagrange multipliers. Given a likelihood L(~x; ~✓) and the constraint ~g(~✓) = 0 we
will find the maximum of:

F (~x; ~✓, ~↵) = lnL(~x; ~✓) + ~↵~g(~✓) (6.10.65)

with respect to ~✓ and ~↵. The estimators of ~✓ found in this way satisfy the constraints and
also have all the usual properties of maximum likelihood estimators.

Example Take the likelihood L(x; ✓1; ✓2) and say we want to estimate ✓1 but we know
from a di↵erent measurement that ✓2 has a a value ✓̄2±�✓2 . We can introduce the constraint
on ✓2 by simply multiplying the likelihood by an gaussian function centred at ✓̄2 with width
�✓2 (or adding the equivalent parabolic term to the log-likelihood). 2

6.11 Some general remarks concerning ML estimators

• For large data sets (large n) the ML estimator ✓̂ is unbiased and normal distributed
around the true value ✓. The variance approaches the RCF-boundary, i.e. ML estima-
tors are e�cient. They are furthermore consistent for large n. These properties explain
the popularity of the ML method.

The MLE with the constraint                 can be found by maximizing
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with respect to both 
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Often the value of the parameter of interest is limited by physical constraints (e.g. mass > 0) 
or by information gathered by other measurements (e.g. uncertainty on calibrations) 

Basically you add to the ln L (or multiply L by) the constrain on the parameter of interest.
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Comments

- The ML is the most widely used estimation method because in the large statistics 
limit the MLE is: 

- unbiased (MLE normally distributed around the true value ϑ) 
- efficient (minimum variance) 
- consistent  

But remember: 

- for small samples it has no optimal properties. In particular it can be biased !  
other estimators may have greater concentration around the true parameter-value. 

- can be extremely CPU-time consuming for large samples (use binned likelihoods) 

- no general way how to estimate “goodness of fit” 
compare simply fitted pdf with data distribution, or perform Monte Carlo 
experiments to obtain distribution of Lmax
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From MLS to LSE
Take the usual example of the dataset (xi, yi)  where the uncertainty on xi is negligible. 
Under the assumption that the yi are gaussian distributed around the true value we can 
write:

84 CHAPTER 7. PARAMETER ESTIMATION - LEAST SQUARES

x

y

f(x;a)

Figure 7.1.1: Sketch to illustrate the notation.

7.1.1 Connection to the Likelihood Function

The simplest way to see the relation between the LS and the ML methods is to take a set of
data (xi, yi) for which the xi are known precisely and the yi are known with uncertainties �i.
Under the assumption that the yi are Gaussian distributed (for instance when coming from
the CLT), the probability to observe yi given the prediction f(xi; a) is:

p(yi|a) =
1

�i

p
2⇡

e
�(yi�f(xi|a))2/2�2

i (7.1.3)

From this we can build the likelihood function for the complete data set as:

L(a, y) =
Y

i

p(yi|a) (7.1.4)

lnL(a, y) = �1

2

X

i

✓
yi � f(xi|a)

�i

◆2

�
X

i

ln�i
p
2⇡, (7.1.5)

where only the first term depends on a. To maximize the negative log-likelihood as a function
of the parameter a will will have to minimize:

�
2 =

X

i

✓
yi � f(xi|a)

�i

◆2

(7.1.6)

which corresponds to the �
2 procedure shown in the previous section. (Eq. 7.1.1).

7.2 Fitting a Straight Line

As a first example of the application of the LS method, we take a set of N independent
measurements (xi, yi) where we assume that the model is linear, and in particular that f(x) =

We can write the likelihood as:
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Under the assumption that the yi are Gaussian distributed (for instance when coming from
the CLT), the probability to observe yi given the prediction f(xi; a) is:
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where only the first term depends on a. To maximize the negative log-likelihood as a function
of the parameter a will will have to minimize:

�
2 =

X
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✓
yi � f(xi|a)

�i

◆2

(7.1.6)

which corresponds to the �
2 procedure shown in the previous section. (Eq. 7.1.1).

7.2 Fitting a Straight Line

As a first example of the application of the LS method, we take a set of N independent
measurements (xi, yi) where we assume that the model is linear, and in particular that f(x) =

does not depend 
on the p.o.i. “a”

Minimizing the negative log likelihood correspond to maximize 
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7.2 Fitting a Straight Line

As a first example of the application of the LS method, we take a set of N independent
measurements (xi, yi) where we assume that the model is linear, and in particular that f(x) =

Which is what we called 
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SummaryRun test
A=above  B=below 
NA+NB = N

Define: r = run or sequence 
Compute the average number of  
runs and its variance

N
NA

(  )

The χ2 ignores the sign of the deviation; the run test looks only at the signs !

Number of  combinations of NA in N
χ2/ndof = 1: Is this a good fit ?

=
N !

NA!NB !

< r >= 1 +
2NANB

N

V (r) =
2NANB(2NANB �N)

N2(N � 1)
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The pull knows everything

Even better you can: 
- Fill the “pull-distribution”, i.e. the histogram 

filled with the value  
- The distribution should be centred at zero 

and have width 1 

If not centred at zero —> bias 
If larger      than 1      —> underestimate   
                                          uncertainties 
If narrower than 1      —> overestimate  
                                         uncertainties 

✓̂ � ✓

�✓̂

A simple way to assess the quality of a fit is to overlap 
the fitted curve on data and plot the pull distribution 
below it. 
(when not divided by the uncertainty it’s called residual)

mass [GeV]

#e
nt

rie
s



Mauro Donegà - Severian Gvasaliya ETHZ                                                              VP - Data Analysis Toolbox
22

Bibliography

Likelihood: 
Lyons ch 4.6 
Cowan Ch 6



Mauro Donegà - Severian Gvasaliya ETHZ                                                              VP - Data Analysis Toolbox
23

Backup
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Fisher information
The variance of a MLE is related to the amount of information carried by the dataset on 
the parameter of interest ϑ. 

Intuitively the information should have the properties: 
1 information should increase if we make more observations  

2 data, which are irrelevant to the estimation of the parameters we wish to estimate or  
  to the hypothesis we wish to test, should contain no information  

3 the precision of the estimation should be greater if we have more information  

The Fisher information carried by a dataset {xi} on the parameter ϑ is defined as: 

6.5. MINIMUM VARIANCE BOUND 73

6.5 Minimum Variance Bound

6.5.1 Information

We introduce here the concept of information following Fisher’s definition. Any information
definition should fulfill the following criteria:

• data, which are irrelevant to the estimation of the parameters we wish to estimate or
to the hypothesis we wish to test, should contain no information

• the information should increase if we make more observations

• the precision of the estimation should be greater if we have more information

The Fisher information (information for short in the following) on a parameter ✓ given by
a data set {~x} of the random variable x is defined as the expectation value:

I~x(✓) = h
✓
@ lnL(~x; ✓)

@✓

◆2

i = (6.5.26)

= h
✓
@l

@✓

◆2

i =
Z ✓

@ lnL(~x; ✓)

@✓

◆2

L(~x; ✓)d~x (6.5.27)

To have a more compact notation we define the score of one measurement as the random
variable:

S1 =
@

@✓
ln f(x; ✓) (6.5.28)

The score of a sample is the sum of the score of each measurement:

S(~x, ✓) =
nX

i=1

S1(xi; ✓) (6.5.29)

and it is equal to the derivative of the log-likelihood w.r.t to the parameter of interest:

S(~x, ✓) =
@ lnL(~x, ✓)

@✓
(6.5.30)

So the definition of the information of the sample ~x on the parameter ✓, can be rewritten as
the expectation value of the square of the score:

I~x(✓) = hS2(~x; ✓)i (6.5.31)

If logL( ~X, ✓) is twice di↵erentiable w.r.t. ✓, then the Fisher information can be rewritten as:

I~x(✓) = h
✓

@

@✓
logL

◆2

i = �h @
2

@✓2
logL i (6.5.32)

With these definitions we can check that the Fisher information fulfills the requirements
shown above.
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compute the  
second derivative
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Fisher information
To simplify notation we define the “score” of one measurement:
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• the information should increase if we make more observations

• the precision of the estimation should be greater if we have more information

The Fisher information (information for short in the following) on a parameter ✓ given by
a data set {~x} of the random variable x is defined as the expectation value:
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To have a more compact notation we define the score of one measurement as the random
variable:

S1 =
@

@✓
ln f(x; ✓) (6.5.28)

The score of a sample is the sum of the score of each measurement:

S(~x, ✓) =
nX

i=1

S1(xi; ✓) (6.5.29)

and it is equal to the derivative of the log-likelihood w.r.t to the parameter of interest:

S(~x, ✓) =
@ lnL(~x, ✓)

@✓
(6.5.30)

So the definition of the information of the sample ~x on the parameter ✓, can be rewritten as
the expectation value of the square of the score:

I~x(✓) = hS2(~x; ✓)i (6.5.31)

If logL( ~X, ✓) is twice di↵erentiable w.r.t. ✓, then the Fisher information can be rewritten as:

I~x(✓) = h
✓

@

@✓
logL

◆2

i = �h @
2

@✓2
logL i (6.5.32)

With these definitions we can check that the Fisher information fulfills the requirements
shown above.

The score of a set of measurements is simply the sum of the scores of each measurement  
and equal to the derivative of the Likelihood wrt the p.o.i.:
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With these definitions we can check that the Fisher information fulfills the requirements
shown above.

With this notation the information becomes:
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Fisher information
The Fisher definition satisfies the properties to be called information: 

1 information should increase if we make more observations  

For n measurements using 
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First we can show that irrelevant data contain no information by considering a dataset ~x

independent from ✓:

hS1(~x; ✓)i = h @
@✓

ln f(x; ✓)i (6.5.33)

=

Z ✓
@

@✓
ln f(x; ✓)

◆
f(x; ✓)dx (6.5.34)

=

Z
1

f(x; ✓)

✓
@

@✓
f(x; ✓)

◆
f(x; ✓)dx (6.5.35)

=

Z
@

@✓
f(x; ✓)dx (6.5.36)

(6.5.37)

interchanging the order of integration and di↵erentiation (this usually holds for smooth dis-
tributions encountered in physics):

hS1(x; ✓)i =
@

@✓

Z
f(x; ✓)dx =

@

@✓
1 = 0 (6.5.38)

since f(x; ✓) is normalized for all values of ✓, and so

hS(~x; ✓)i =
X

hS1(xi; ✓)i = 0 (6.5.39)

which proves that irrelevant data contain no information.

We can now show that the information increases with the number of observations:

I(✓) = h
 

nX

i=1

S1(xi; ✓)

!2

i = V

 
nX

i=1

S1(xi; ✓)

!
+ h

nX

i=1

S1(xi; ✓)i2 (6.5.40)

where we used V (a) = ha2i�hai2. Assuming that the single measurements xi are independent,
the variance of the sum is the sum of the variances. And since all the measurements are taken
from the same p.d.f., the variance is the same for all i. A similar argument applies to the
second term. So:

I(✓) = nV (S1(x; ✓)) + n
2hS1(x; ✓)i2 (6.5.41)

which shows that the information increases with the number of observations.

The last requirement left to be shown is that the precision of the estimation should be
greater if we have more information. This will allow us to introduce an important property
of estimators, namely that, under general conditions, there is a lower limit to its variance.
To do this we need to introduce the “Rao-Cramér-Frechet inequality”.
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where we used V (a) = ha2i�hai2. Assuming that the single measurements xi are independent,
the variance of the sum is the sum of the variances. And since all the measurements are taken
from the same p.d.f., the variance is the same for all i. A similar argument applies to the
second term. So:

I(✓) = nV (S1(x; ✓)) + n
2hS1(x; ✓)i2 (6.5.41)

which shows that the information increases with the number of observations.

The last requirement left to be shown is that the precision of the estimation should be
greater if we have more information. This will allow us to introduce an important property
of estimators, namely that, under general conditions, there is a lower limit to its variance.
To do this we need to introduce the “Rao-Cramér-Frechet inequality”.

Assuming independent measurements, the variance of the sum is the sum of the variances, 
and being sampled from the same pdf they are all equal (same for the expectation value  
of the sum of scores)
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which shows that the information increases with the number of observations.

The last requirement left to be shown is that the precision of the estimation should be
greater if we have more information. This will allow us to introduce an important property
of estimators, namely that, under general conditions, there is a lower limit to its variance.
To do this we need to introduce the “Rao-Cramér-Frechet inequality”.

Proving that the information increases with the number of measurements

2 irrelevant data carry no information 

for irrelevant data the p.d.f. will not depend on θ and the score by definition will be 0 
adding no information
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To appreciate the third point (“the precision of the estimation should be greater if we have 
more information”) let’s first look again at the uncertainty of the MLE. 

With the Fisher information definition we see that 

MLE uncertainty

76 CHAPTER 6. PARAMETER ESTIMATION - LIKELIHOOD

This inequality means that there is a lower bound on the variance of the estimator; i.e. given
a certain amount of information (a data set) we can never find a estimator with lower variance
than this bound. To reduce the bound we need to get more information. For an unbiased
estimator the bound becomes V (✓̂) = 1/I(✓).
Now that we know what is the minimum variance of an estimator we can also define its
e�ciency as

✏(✓̂) =
Vmin(✓̂)

V (✓̂)
 1 (6.5.46)

which for an unbiased estimator is

✏(✓̂) =
1

V (✓̂)I(✓)
 1 (6.5.47)

An estimator with ✏ = 1 is called e�cient. It is not always possible to find an e�cient
estimator, but it can be shown that:

• if an e�cient estimator for a given problem exist, it will be found using the ML method

• ML estimators are e�cient in the large sample limit.

6.6 Uncertainty for ML estimators

Let’s take the simplest case of a likelihood with only one parameter in the large sample limit
(i.e. the estimator is e�cient and the RCF is valid as an equality). Expand its NLL function
around ✓ = ✓̂:

F (✓) = � lnL(✓) = F (✓̂) +
1

2

d
2
F

d✓2
|
✓=✓̂

(✓ � ✓̂)2 + · · · (6.6.48)

(the first derivative vanishes by construction because of ML principle), then:

L(✓) ⇠ const · exp
✓
�1

2
· d

2
F

d✓2
|
✓=✓̂

(✓ � ✓̂)2
◆

:= const · exp
 
�(✓ � ✓̂)2

2�2

!
. (6.6.49)

The likelihood can be approximated by a Gaussian in the neighborhood of its maximum and
by comparing the exponents we find:

�
2(✓̂) =

1

d2F/d✓2|
✓=✓̂

=
1

I(✓̂)
. (6.6.50)

The variance is the inverse of the second derivative of the log-likelihood at ✓ = ✓̂, i.e. the
inverse of the information.
The di↵erence F (✓)� F (✓̂) calculated at ✓ = ✓̂ ± n · �(✓̂), using the equations above is:

F (✓̂ ± n�)� F (✓̂) =
1

2

d
2
F

d✓2
|
✓=✓̂

(✓̂ ± n� � ✓̂)2 =
1

2

1

�2
(n�)2 =

1

2
n
2 (6.6.51)

This enables us to find the uncertainty of an estimator ✓̂ easily be looking at the graph for
the log-likelihood function. When the log-likelihood has decreased from the maximum by 0.5
you are at ±1�, by 2 you are at ±2�, by 4.5 you are at ±3� and so on.

The variance is the inverse of the second derivative of the likelihood,  
i.e. the inverse of the information.

To reduce the uncertainty of a MLE we need to increase the information, 
but there is a bound: “minimum variance bound”



Mauro Donegà - Severian Gvasaliya ETHZ                                                              VP - Data Analysis Toolbox 28

Efficient estimator

Efficiency 
if it has the smallest possible variance (see later Rao-Cramer-Frechet inequality /  

 variance bound)
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Figure 6.1.2: Some estimator properties

previous section is asymptotically unbiased (hµ̂i = n/(n � 1)µ) and so bn(µ̂) ! 0 for
n ! 1. If we know the bias, we can construct an unbiased estimator by correcting it.

• An estimator is called consistent if by collecting more data it converges to the true
value, i.e. if 8✏ > 0, limn!1 P (|✓̂� ✓| � ✏) = 0. For instance if ✓̂ is the average of data
distributed according to a p.d.f. where we can apply the CLT, then ✓̂ is a consistent
estimator because N(x̄;µ,�2

/n) tends to a delta function for n ! 1. In the list of the
previous section for example, the first and the third are consistent the second is not.

• An estimator is called e�cient if it has the smallest possible variance of ✓̂ (see later in

this section). The e�ciency ✏ is defined as ✏ = minimalVariance of ✓̂
Variance of ✓̂

.

• An estimator is called robust if it is insensitive to wrong data or wrong assumptions,
especially in the tails of a distribution.

6.2 Estimation of the Mean

The estimator for the mean µ obtained from n independent measurements xi is:

µ̂ =
1

n

X

i

xi. (6.2.1)
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The variance is the inverse of the second derivative of the log-likelihood at ✓ = ✓̂, i.e. the
inverse of the information.
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This enables us to find the uncertainty of an estimator ✓̂ easily be looking at the graph for
the log-likelihood function. When the log-likelihood has decreased from the maximum by 0.5
you are at ±1�, by 2 you are at ±2�, by 4.5 you are at ±3� and so on.

Looking back at last week definition

When ε = 1 the estimator is called efficient

It is not always possible to find an efficient estimator, but it can be shown that:  
- if an efficient estimator for a given problem exist, it will be found using the ML method  
-  ML estimators are efficient in the large sample limit. 

8 .2 . PROPERTIES OF ESTIMATORS 1 0 7

The equality ρ = ±1 corresponds to a linear relationship between the variables
(exercise 7 ), i.e., a straight line on a graph of S vs. θ̂. Thus, assuming that the
conditions of the minimum variance bound hold, an estimator θ̂ can be efficient if
and only if it is a linear function of S, with the possible exception of regions where
the probability is zero.

Let A(θ) and B(θ) be functions of θ, but not of x, and A′, B′ be their derivatives
with respect to θ. Then we can write the linear relationship as

∂

∂θ
ln f(x; θ) ≡ S = A′(θ)θ̂(x) + B′(θ) (8.30 )

Since θ̂ is a statistic and hence depends only on x, integration over θ gives

ln f(x; θ) = A(θ) θ̂(x) + B(θ) + K(x) (8.31 )

where the integration constant K may depend on x but not on θ. Then, where the
required normalization is included in B and/ or K,

f(x; θ) = exp
[
A(θ) θ̂(x) + B(θ) + K(x)

]
(8.32 )

Any p.d.f. of the above form is said to belong to the exponential family. What
we have shown is that an efficient estimator can be found if and only if the p.d.f. is
of the exponential family where the estimator enters the exponent in the way shown
in equation 8.32 .

Note that the efficient estimator is not necessarily unique since the product A · θ̂
can often be factored in more than one way. The estimator θ̂ will be an unbiased
estimator for some quantity, although not necessarily for the quantity we want to
estimate. It may also not be an estimator which we will be able to use. Let us now
calculate the expectation of θ̂ and see for what quantity it is an unbiased estimator:
From equation 8.30 ,

θ̂ =
S(x; θ)

A′(θ)
− B′(θ)

A′(θ)

Since A′ and B′ do not depend on x, the expectation is then

E
[
θ̂
]

=
1

A′(θ)
E [S(x; θ)]− B′(θ)

A′(θ)

Since E [S(x; θ)] = 0 , we have

E
[
θ̂
]

= −
∂B(θ)
∂θ

∂A(θ)
∂θ

(8.33)

This is the quantity for which the θ̂ in equation 8.32 is an unbiased, efficient esti-
mator.

Th: An efficient estimator can be found if and only if it belongs to the exponential family:
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Rao-Cramer-Frechet inequality
Both the score and the MLE are random variables.  
Let’s compute the covariance among them

Rao-Cramér-Frechet inequality 75

6.5.2 Rao-Cramér-Frechet inequality

Let ✓̂ be an estimator of ✓ with bias bn(✓̂) = h✓̂i� ✓ and assume that its variance is finite and
that the range of x does not depend on ✓. Then we can write:
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The second term is zero: 

Both the score and the MLE are random variables.  
Let’s compute the covariance among them
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First we can show that irrelevant data contain no information by considering a dataset ~x

independent from ✓:

hS1(~x; ✓)i = h @
@✓

ln f(x; ✓)i (6.5.33)
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◆
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(6.5.37)

interchanging the order of integration and di↵erentiation (this usually holds for smooth dis-
tributions encountered in physics):

hS1(x; ✓)i =
@

@✓

Z
f(x; ✓)dx =

@

@✓
1 = 0 (6.5.38)

since f(x; ✓) is normalized for all values of ✓, and so

hS(~x; ✓)i =
X

hS1(xi; ✓)i = 0 (6.5.39)

which proves that irrelevant data contain no information.

We can now show that the information increases with the number of observations:

I(✓) = h
 

nX

i=1

S1(xi; ✓)

!2

i = V

 
nX

i=1

S1(xi; ✓)

!
+ h

nX

i=1

S1(xi; ✓)i2 (6.5.40)

where we used V (a) = ha2i�hai2. Assuming that the single measurements xi are independent,
the variance of the sum is the sum of the variances. And since all the measurements are taken
from the same p.d.f., the variance is the same for all i. A similar argument applies to the
second term. So:

I(✓) = nV (S1(x; ✓)) + n
2hS1(x; ✓)i2 (6.5.41)

which shows that the information increases with the number of observations.

The last requirement left to be shown is that the precision of the estimation should be
greater if we have more information. This will allow us to introduce an important property
of estimators, namely that, under general conditions, there is a lower limit to its variance.
To do this we need to introduce the “Rao-Cramér-Frechet inequality”.
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which for an unbiased estimator is 

V (✓̂) � 1

I(✓)

Rao-Cramer-Frechet 
inequality

This is called minimum variance bound
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Comments on the extended MLE
The total number of events is unknown 
Case 1): v=v(ϑ) the parameter v depends on ϑ.

Case 2):  the parameter v does not dependent on ϑ. Maximizing the likelihood we find 

We also obtain as estimators the same ϑ the standard ML, but with larger variance

6.9. COMBINATION OF MEASUREMENTS WITH THE ML METHOD 79

We can now distinguish two cases:
Case 1): the parameter ⌫ depends on ✓. The EML log-likelihood function can be written as

lnL(✓) = n ln ⌫(✓)� ⌫(✓) +
nX

i=1

ln f(xi; ✓) (6.8.62)

= �⌫(✓) +
nX

i=1

ln(⌫(✓)f(xi; ✓)) (6.8.63)

where the additive terms not depending on ✓ are dropped. By taking the Poisson term into
consideration in the EML function, the resulting variance is usually smaller, because when
estimating ✓̂, we use the extra information brought in by n.

Case 2): ⌫ does not dependent on ✓. Di↵erentiating Eq. 6.8.61 and equating it to zero
yields as estimator simply ⌫̂ = n, as expected. We also obtain as estimators the same ✓̂i of
the standard ML. Nevertheless the variance of the ✓̂i would be bigger because now not only
✓̂ but also n is a source of statistical uncertainties.

6.9 Combination of Measurements with the ML Method

Suppose we have di↵erent measurements of the same parameter ✓ by di↵erent experiments
and you want to combine them using the ML method. More precisely, suppose we have a
set of n measured data points with probability density f(x; ✓) from one experiment and a
second set with m measured data points yi, which are distributed according to a probability
density g(y; ✓) from a second experiment. The two probability densities f(x; ✓) and g(y; ✓)
can have di↵erent functional forms, because of the di↵erent experimental techniques used to
determine ✓. As an example you can think of ✓ being the mass of a particle and f and g the
results of two experiments or the results of the mass measurement in two decay modes.
The two experiments together can be interpreted as one single experiment and the resulting
likelihood is just the product of:

L(✓) =
nY

i=1

f(xi; ✓) ·
mY

i=1

g(yi; ✓) = Lx(✓) · Ly(✓) (6.9.64)

This expression becomes clear if you think back at the definition of likelihood. The likelihood
is based on the conditional probability that, given a parameter ✓ we observe the data set we
have. The product above, just extends the conditional probability further to a larger data
set comprising two experiments.
This way of combining di↵erent measurements is only valid in the case where the two like-
lihood are totally uncorrelated, i.e. the two experiments do not share any common source
of uncertainty. If that is not the case then the parameters correlation has to be included in
the likelihoods expressions. A real life example can be found in the combination of the Higgs
mass measurement performed by the ATLAS and CMS collaborations [47].
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