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Week 7

Learning goals of the week: 
- learn how to generate simple toy MC samples 
- sliding mean
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Monte Carlo basics
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Monte Carlo method
Monte Carlo methods are numerical methods based on the random sampling of input 
distributions to solve problems such as systems simulations or numerical integration. 

Typically they are used when a direct analytical solution is not achievable  

The basic idea can be summarized as: 
- find the domain space of all relevant variables of the system you want to 

simulate / integrate: this is typically a multi-dimensional space and the variables 
are coupled 

- generate a set of data, sampling the distribution of variables in the domain 
space by throwing random numbers 

- Compute the output of the MC based on the sampled distributions 

Examples of applications:  
- particle scattering  
- Numerical Integrations 
- Risk analysis 
- Finance, stock market, transaction probabilities… 
- Investment banking 
- …
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History: compute π

52 CHAPTER 4. MONTE CARLO METHODS

Figure 4.0.2: Probabilities for needles to cross the border of the strip depending on their
position between the two borders (left), and the result of a MC simulation with its error
(dashed line).

Figure 4.0.3: The circle inscribed in a square used to calculate ⇡.

As of today, the MC methods are preferably used in numerical mathematics if the formulation
of the stochastic model is simpler than the formulation of the analytic model for the numerical
solution of the problem. Monte Carlo methods are used in many di↵erent areas of research.
To name just a few of them:

• Numerical problems, such as the calculation of integrals or the solution of ordinary or
partial di↵erential equations.

• Quality control of products, for example the determination of the lifetime of light bulbs.

• Problems from operations research, such as transport problems.

⇡r2

4r2
=

in

all

⇡ = 4 · in
all

Wait for a rainy day and count the number of 
raindrops within a circle and the square inscribing it
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History: compute π

Chapter 4

Monte Carlo methods

In this chapter we will discuss an introduction to the so-called Monte Carlo (MC) simulations,
which use random numbers and a sequential description of the operations as basic concepts.
Because this method uses principles from probability calculations and statistics, it is also
known as the method of statistical trials. In the next sections, after a digression on random
number generators, we will describe two of the most common applications of Monte Carlo
methods: integration and simulation.

Figure 4.0.1: Randomly distributed needles on a strip which has the width of the length of
one needle. 81 out of 128 needles cross the border of the strip in this picture.

Probably the oldest mentioning of a Monte Carlo method, which illustrates all its basic
elements, is known as the needle experiment by Bu↵on1. The duke ba✏ed his colleagues in
1777 with a simple method to get the number ⇡ by simply counting the number of needles
thrown onto a strip with the same width as the length of the needles (l). He found out that
the ratio between the number of needles (k) crossing the border of the strip (the slightly
darker ones in Fig. 4.0.1) and the total number of thrown needles (n) is exactly 2/⇡ (i.e.
k/n = 2/⇡ = p). This value is calculated analytically using the position dependent probability
density to cross the border of the strip, which is an arccos function, mirrored in the middle of
the strip (see Fig. 4.0.2 on the left). The picture on the right hand side in Fig. 4.0.2 shows the
convergence to the exact value of ⇡ with increasing number of thrown needles. The dashed
line in this figure is the expected error for the value of ⇡, which is calculated using the binomial
distribution for k by including the error propagation to be 2n

k2

p
np(1� p) = 2.37/

p
n.

Another example for the determination of ⇡ is to inscribe a circle in a square and drop objects
randomly on it (e.g. drops of rain, see Fig. 4.0.3). From the ratio of the number of drops
ending in the circle to the total number of drops in the square one finds that ⇡ = 4 ⇤ in/all.
With 106 drops we found a value of 3.13954.

1
George Louis Leclerc, Duke of Bu↵on (1707 - 1788), a French natural scientist

51

(1777, Duke of Buffon) Compute π counting needles thrown on a strip of paper of 
width equal to the length of the needles (l). 
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Figure 4.0.2: Probabilities for needles to cross the border of the strip depending on their
position between the two borders (left), and the result of a MC simulation with its error
(dashed line).

Figure 4.0.3: The circle inscribed in a square used to calculate ⇡.

As of today, the MC methods are preferably used in numerical mathematics if the formulation
of the stochastic model is simpler than the formulation of the analytic model for the numerical
solution of the problem. Monte Carlo methods are used in many di↵erent areas of research.
To name just a few of them:

• Numerical problems, such as the calculation of integrals or the solution of ordinary or
partial di↵erential equations.

• Quality control of products, for example the determination of the lifetime of light bulbs.

• Problems from operations research, such as transport problems.

k/n = 2/π : the ratio between the 
number of needles (k) crossing the 
border of the strip (the slightly darker 
ones in Fig. 4.0.1) and the total 
number of thrown needles (n) is 2/π  

[proof: see e.g. wiki]
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Random numbers generator
True random generators are based on physical processes. In the previous two examples: 
raindrop distribution, needles distribution 
(see e.g. http://www.random.org offers true random numbers generated from atmospheric noise) 

Examples of physical processes: 
- noise level across a resistor 
- time between the arrival of cosmic rays  
- number of radioactive decays in a fixed time interval.  

Early physical generator: use the stopping azimuthal position of a cylinder which had been 
put in rotation by a motor (activated by an operator) and turned off by a cosmic ray 
recorded by a detector 
—> Too slow, not affordable to generate large sets of random numbers 

No need for true randomness: pseudorandom (i.e. generated by a computer following an 
algorithm) is good enough.  
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(Pseudo-)Random numbers generator
Linear congruential generator —> generate uniformly distributed numbers in (0, 1]  

4.1. (PSEUDO)RANDOM NUMBERS GENERATORS 53

• Decision management using simulations or risk analysis in investment banking.

Monte Carlo methods can generally be spilt into three major steps:

• A stochastic model has to be found for the original mathematical model, which describes
the problem accurately enough.

• A sequence of random numbers has to be generated, which are then used to simulate a
realistic situation, and hence have the same underlying distribution.

• Estimates for the original problem have to be found using the results coming from the
random numbers.

Monte Carlo was eponymous for this process: the problems connected to gambling were mo-
tivating enough to start thinking about randomness of events.

4.1 (Pseudo)Random Numbers Generators

True random generators are based on physical processes. Examples can be the noise level
across a resistor, the time between the arrival of two cosmic rays or the number of radioactive
decays in a fixed time interval. A method from the early applications of Monte Carlo technique
in high energy physics, used the stopping azimuthal position of a cylinder which had been
put in rotation by a motor (activated by an operator) and turned o↵ by a cosmic ray recorded
by a detector.2

The main issues with these kind of random number generators is that they are very slow.
The solution adopted is to generate random numbers running an algorithm on a computer.
By construction the obtained random sequence is not random (that’s why they are called
pseudo-random).We’ll see in the following that the two most important parameters of any
generator are the period length (how many numbers it can generate before it starts to repeat
itself) and the correlation between the generated numbers.
A simple and classic generator is the general linear congruential generator:

ni+1 = (a · ni + c) mod m ui = ni/m (4.1.1)

it generates uniformly distributed numbers in the interval (0...1]. The boundary value 0 is
usually not included to avoid the divide-by-zero danger in case the number is carelessly used
in further calculations. We will call such a uniform probability density U(0, 1):

U(0, 1) =

(
1 if 0 < u  1,

0 else
(4.1.2)

The algorithm uses three integer constants: the multiplicand a, the summand c and the
module m. Generators with the summand c = 0 are called multiplicative linear congruential
generators. The initial value n1 is also called seed: the choice of the initial value allows to
steer the generation process. The distribution and the correlation among the first 10’000
values using the values m = 231, a = 65539 and c = 0 is shown in Fig. 4.1.4. It was first used
in the sixties by IBM and became famous under the name of RANDU.

where a and c are integer numbers. The initial value n1 is called the seed: all 
(pseudo-)random number generators can be started from an arbitrary initial state 
called “seed “. It will always produce the same sequence when initialized with that 
state
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Figure 4.1.4: Histogram (100 bins) of the first 10’000 values generated with RANDU and
correlations among three sequential values (not binned). 10’000 values, generated with the
MATLAB-function rand, have been plotted for comparison in the same way on the right hand
side graph.

It is a general property of a linear generator that a sequential k-tuple of random numbers
lies in the k-dimensional space on (k � 1)-dimensional hyperplanes3. The maximal distance
between these hyperplanes is an important test for linear generators (spectral test). The
graph on the right hand side in Fig. 4.1.4 compares RANDU (graph in the middle) to a far
more uniform distribution from the MATLAB generator rand.
Nowadays algorithms exist with a period length of 219937 and which are (for most practical
purposes) uncorrelated. The random generators which are implemented in many computer
programs are usually su�cient for daily use. Nevertheless, in some special cases such as
lattice QCD calculations, far better generators are needed.
Two tricks used to get random numbers with minimal correlation and extraordinary long
period length are:

• Combination: Two random numbers are generated with a generator each, and a new
one is generated using the operations +, � or exclusive-OR at bit level.

• Rearrangement: The memory is filled with some random numbers, and the result of
another generator is used to determine the address in the memory for the next random
number.

4.1.1 Tests of Random Generators

For an extensive overview see Knuth [11], here we will briefly touch upon the most important
ones:

• Test for uniform distribution. The interval [0,1] is divided into k equal sub-intervals
of length 1/k. N random numbers ui are generated and it is counted how many of these
numbers come to lie in each of the sub-intervals. If we call the number of cases in each

2
http://www.random.org o↵ers true random numbers generated from atmospheric noise.

3
G. Marsaglia, ”Random numbers fall mainly in the planes”, Proc. Natl. Acad. Sci. 61(1), 2528 (1968)

Properties: 

periodicity: the maximum, over all starting 
states, of the length of the repetition-free 
prefix of the sequence.  

correlations: If n successive random 
numbers are plotted as coordinates in an n-
dimensional space, then these points lie on 
hyperplanes. A good generator has many 
hyperplanes uniformly distributed.  

def lcg(modulus, a, c, seed):
  while True:
    seed = (a * seed + c) % modulus
    yield seed
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Example: Mersenne Twister —> python 
period of 219937−1 iterations (≈4.3×106001) 
equi-distributed in (up to) 623 dimensions (for 32-bit values) 

>>> import numpy as np 

Sequence of random numbers: 
>>> np.random.seed(12345) 

>>> 5 + np.random.sample(10) * 5 
array([ 7.14292096,  6.84837089,  6.38203972,  8.80365208,  9.06627847, 
        5.69871186,  6.37734538,  9.60618347,  9.34319843,  8.63550653]) 

(Pseudo-)Random numbers generator
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Hit / Miss method
Generate random numbers according to a probability distribution. 
General method, but not very efficient

Assume  a < x < b:  determine an upper limit c with c ≥ max(f(x)) 
The hit/miss algorithm is: 
1. Choose xi uniformly from the interval [a,b]: xi = a + ui · (b − a), with ui ∈ U (0, 1). 

Test histo

pdf

a           b

fmin 

c = fmax 

!
 

2. Choose another random number  
     uj ∈ U(0,1).  

3. If f(xi) > uj · c, then “miss”: go to step 
1, otherwise “hit” xi as random number.  

The efficiency of this method is given by 
the ratio between the integral of f(x) over 
[a,b] and the total area c · (b − a) of the 
space of all generated pairs (ui, uj ).  

aka acceptance/rejection methods
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Hit / Miss method

If dot below curve, put  

x value in the histogram.
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cdf: Cumulative distribution function
The cdf is defined as F (x) =

Z x

�1
f(t)dt

and it represents the probability to observe a value of the random variable less or equal to x

Properties: 
- F(x) is a non decreasing, differentiable function of x 
- F(-∞) = 0  ( F(xmin) ) 
- F( ∞) = 1  ( F(xmax) ) 
- F(x) is dimensionless (as all probabilities) 

From the cdf we can obtain back the pdf by differentiation f(x) =
dF (x)

dx

The probability to observe a random variable between two values x1 and x2 is 

8 CHAPTER 1. PROBABILITY

variable can only have certain values it is called a discrete variable. In the same manner,
data described by discrete or continuous variables are called discrete data or continuous data
respectively. The distribution f(x) of a random variable x is called probability density
function (p.d.f.). f(x0)dx0 is the probability to find x in the interval between x

0 and x
0+dx

0

and it is normalized
R +1
�1 f(x0)dx0 = 1 (the probability to find x anywhere in its event space

is 1). Furthermore it is important to notice that f(x) is not a probability but f(x)dx is.

1.8 Cumulative distribution function

Let x be a one-dimensional continuous random variable distributed according to f(x). The
cumulative distribution function (cdf) F (x0) gives the probability that the random
variable x will be found to have a value less than or equal to x

0:

F (x0) =

Z
x
0

�1
f(x)dx (1.8.12)

It follows trivially that F (�1) = 0 and F (+1) = 1. The function F is a monotonously
(but not necessarily strictly monotonously) rising function of x. It does not need to be a
continuous function, but it needs to be smooth in the limits ±1. The probability density
function f(x) is then simply f(x) = dF (x)/dx. Note that the function F is dimensionless
whereas the function f has dimension 1/x. The probability to observe the random variable
between two values x1 and x2 can be written in terms of the cdf as:

p(x1  x  x2) =

Z
x2

x1

f(x0)dx0 = F (x2)� F (x1) (1.8.13)

The relationship between f and F is depicted in Fig. 1.8.1.

1.9 Mean, Median and Mode

The arithmetic mean x̄ (or simply mean value) of a set of N numbers Xi:

x̄ =
1

N

NX

i=1

Xi (1.9.14)

The mean of a function of x, (f̄) can be calculated analogously:

f̄ =
1

N

NX

i=1

f(Xi). (1.9.15)

If the N data points are classified by a frequency distribution inm intervals (i.e. a histogram),
and if nj stands for the number of entries in the interval j, then 3:

x̄ =
1

N

mX

j=1

njXj . (1.9.16)

3
see also the weighted mean in Sec. 3.4
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Cumulative and quantiles

xq = quantile of order q (or q-point),         
        with  0≤ q ≤ 1, of a distribution is  
        the value of x such that F(xq) = q  

The quantile is just the inverse of the cdf 
xq = F-1(q)

f(x)

F(x)

x

50%

80%

20%

median = F(x50 = 0) =

x50 = 0

Quantiles with a name: 
quartiles = 0%, 25%, 50%, 75%, 100% 
percentiles = 0%,1%,2%,…, 98%, 99%, 100%

50% 50%

notebook https://gitlab.ethz.ch/mdonega/STAMET_FS18/blob/master/notebooks/cumulative.ipynb

https://gitlab.ethz.ch/mdonega/STAMET_FS18/blob/master/notebooks/cumulative.ipynb
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Inverse cumulative method
The basic idea is to transform a uniform distribution of random numbers to any other  
(continuous) distribution by using its cdf.

4.2. ARBITRARILY DISTRIBUTED RANDOM NUMBERS 55

sub-interval Ni, i = 1 ... k, then the sum

�
2 =

kX

i=1

(Ni �N/k)2

N/k
(4.1.3)

should (for N/k � 10) approximately follow a �
2-distribution with (k-1) degrees of free-

dom. This means that on average the ratio �
2
/(k� 1) should be 1. Similar expressions

can be constructed for non-uniform distributions.

• Test for correlation. If n successive random numbers are plotted as coordinates in
an n-dimensional space, then these points lie on hyperplanes, as shown above. A good
generator has many hyperplanes which are uniformly distributed.

• Gap test. Choose two numbers ↵,� with 0  ↵ < �  1. Generate r + 1 random
numbers, which are uniformly distributed in the interval [0,1]. The probability that the
first r numbers are not included in the interval [↵,�] and the last, r + 1th number is
included in the interval should be Pr = p(1� p)r with p = � � ↵.

• Random walk test Choose a number 0 < ↵ < 1. Build a large set of random numbers
and note the number of cases r in which a random number is smaller than ↵. We expect
this to be a binomial distribution for r with p = ↵. This test is very sensible for large
values of r. The test should also be made for the amount of random numbers which
are larger than (1� ↵).

4.2 Arbitrarily distributed Random Numbers

Up to now we considered random numbers generated on a constant distribution. More gener-
ally we will need random numbers distributed according to some probability density f(x). For
example, we might need random numbers following a gaussian distribution. In this section
we will describe the most important methods to generated arbitrarily distributed random
numbers.

4.2.1 Inverse of the Cumulative Distribution

A standard procedure to produce random numbers generated according to the distribution
f(x) starts with random numbers ui 2 U(0, 1) and transforms them using the inverse function
of the cumulative distribution F (x):

f(x) dx = U(0, 1) du

Z
x

�1
f(t) dt = F (x) = u x = F

�1(u) (4.2.4)

F
�1 is the inverse function of the cumulative distribution function F (x). The method is

illustrated in Fig. 4.2.5. For a sequence of uniform random numbers ui, the random numbers
xi = F

�1(ui) are distributed according to the probability density f(x). This direct and ele-
gant method can only be applied if the integral of the probability density can be expressed
as an analytic function F (x) and this F (x) is invertible.

Example: random numbers generated on an exponential distribution. The p.d.f. for the

56 CHAPTER 4. MONTE CARLO METHODS

Figure 4.2.5: Generation of random numbers on a continuous distribution f(x) using the
inverse of the cumulative distribution function F (x).

exponential distribution is given by the f(x;�) = �e
��x for x � 0, and it is zero for x < 0.

The cumulative distribution is:

u = F (x;�) =

Z
x

0
�e

��t
dt = 1� e

��x (4.2.5)

Inverting the cumulative we get the sequence of exponentially distributed random numbers
xi = � ln(1� ui)/�. Or, because ui and 1� ui are equally distributed in the interval (0...1)
we can write xi = � ln(ui)/�. 2

If we have an application with very large random numbers (for example very long lifetimes
t � ⌧ = 1/�), then the above method might not be precise enough. Very large values of x
are generated by very small values of u. Because floating point numbers are represented with
finite accuracy in a computer, large values of x will appear as discrete.

4.2.2 Acceptance-Rejection Method

The acceptance-rejection method (also known as “hit-or-miss”), even though not very e�-
cient, can be used to generate random numbers according to a given probability density f(x)
when the cumulative distribution function F (x) cannot be inverted.
Under the assumption that the variable x is restricted to some interval a < x < b, we can
determine an upper limit c with c � max(f(x)); where max(f(x)) is the maximum of f(x)
in the interval [a, b]. This is then fed into the following algorithm:

1. Choose xi uniformly from the interval [a,b]: xi = a+ ui · (b� a).

2. Choose another random number uj 2 U(0, 1).

3. If f(xi) < uj · c, then go back to step 1, otherwise accept xi as random number.

The e�ciency of this method is given by the ratio between the integral of f(x) over [a,b] and
the total area c · (b � a) of the space of all generated pairs (ui, uj). The e�ciency can be
increased if we can find a function s(x) which has the approximate shape of f(x), which has
an invertible cdf and for all x in [a,b] and s(x) > f(x). By means of

Z
x

�1
s(t)dt = S(x) xi = S

�1(ui) (4.2.6)

we can apply the following algorithm:
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Inverse cumulative method
The principle is to match the quantile of one distribution to the corresponding 
quantile of the target.  
e.g. the quantile corresponding to the first 10% is matched to the quantile of the 
first 10% of the target distribution.

Given n points {r1, r2,..., rn} uniformly distributed in [0, 1], find {x1, x2,..., xn} that 
follow f (x) by finding a suitable transformation x(r). 

Solve r’ = F(x(r’))   inverting the cumulative   x(r’) =  F-1(r’)

r’
x(r’)
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The cumulative is 

Example: exponential pdf

Invert it:



Mauro Donegà - Severian Gvasaliya ETHZ                                                              VP - Data Analysis Toolbox
16

Trick: sliding mean
Any measurement you do is affected by noise. 

To reduce the effect of noise we learnt to take several measurements (sampling) and 
compute mean/variance them (week 1 - gaussian hp) or fit them and extract the 
parameters of the underlying pdf (week 5-6). 

When plotting data, the physical signal you want to present might be obscured by large 
noise (random) fluctuations overlapped to it.

A simple trick to show the data 
is to average the data in a “sliding 
window” on the “x-axis” and plot it  
overlapped to the original data.



Mauro Donegà - Severian Gvasaliya ETHZ                                                              VP - Data Analysis Toolbox
17

Trick: sliding mean

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/JFM_season_nao_index.shtml

The North Atlantic Oscillation (NAO) index is based on the surface sea-level pressure difference between the 
Subtropical (Azores) High and the Subpolar Low. https://www.ncdc.noaa.gov/teleconnections/nao/



Mauro Donegà - Severian Gvasaliya ETHZ                                                              VP - Data Analysis Toolbox
18

Backup
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4.3 Monte Carlo Integration

Monte Carlo techniques can be used to evaluate integrals:

I =

Z
b

a

f(x)dx (4.3.10)

with f(x) is any function. The straightforward deterministic way to evaluate the integral is
to divide the range [a, b] in n intervals and compute I as:

b� a

n

nX

i=1

f(yi) (4.3.11)

where xi = a + (i � 0.5)(b � a). The corresponding Monte Carlo way di↵ers only by the
choice of the points where we evaluate the sum: instead of regularly spaced points we choose
random numbers:

xi = a+ ri(b� a) (4.3.12)

with ri random numbers uniformly distributed in [0, 1].

The uncertainty on the estimate of the integral I depends on the variance of f(xi) in the
following way

V [IMC ] = �
2
IMC

= V

h
b� a

n

nX

i=1

f(xi)
i
=

⇣
b� a

n

⌘2
V

h nX

i=1

f(xi)
i
=

(b� a)2

n
V [f(xi)]

(4.3.13)
This equation shows us that the accuracy of the computation decreases with 1/

p
n (the root

square of the Variance).

If we compare the accuracy of the two methods, we see that the deterministic approach
converges to the true integral value as 1/n2 while the Monte Carlo only approaches as 1/

p
n.

So we would be tempted to discard the Monte Carlo approach in favour of the deterministic
one.
The big advantage of Monte Carlo appears when we need to compute integrals in more than
one dimension. The deterministic method will converge as n

�2/d (with d number of dimen-
sions), while the Monte Carlo method still converges as 1/

p
n. This problem goes under the

name of the “curse of dimensionality”. We will come back to it in Sec. 10 when talking about
Multi-Variate-Analysis techniques.

4.3.1 Methods to reduce the Variance

Just as there are better numerical methods to compute the integral I than the one in
Eq. 4.3.11, there are methods to reduce the variance of the Monte Carlo estimation. We
report here the most important ones.

Stratification
Simply dividing the range of integration in two regions and generating half of the Monte
Carlo points in each of the regions reduces the variance. The reason is that in this way we

19

Monte Carlo integration
Reminder: simple numerical (definite) integral computation of
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one dimension. The deterministic method will converge as n

�2/d (with d number of dimen-
sions), while the Monte Carlo method still converges as 1/

p
n. This problem goes under the

name of the “curse of dimensionality”. We will come back to it in Sec. 10 when talking about
Multi-Variate-Analysis techniques.

4.3.1 Methods to reduce the Variance

Just as there are better numerical methods to compute the integral I than the one in
Eq. 4.3.11, there are methods to reduce the variance of the Monte Carlo estimation. We
report here the most important ones.

Stratification
Simply dividing the range of integration in two regions and generating half of the Monte
Carlo points in each of the regions reduces the variance. The reason is that in this way we

Split the range [a,b] in n intervals and approximate the function in the interval  
by its value in the centre of the bin, or interpolating between the two computing  
the area of the trapezoid
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4.3 Monte Carlo Integration

Monte Carlo techniques can be used to evaluate integrals:
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with deterministic approach

[wiki]  You can evaluate the function at the 
central value of the bin, or at the min 
and max and approximate the function 
with a linear interpolation, etc ...

The uncertainty goes as n-2/d, where  
d is the number of dimensions of the 
integral.
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Monte Carlo integration
The most naive implementation of the Monte Carlo technique follows the same principle but 
instead of using a regularly spaced grid points, we use randomly distributed numbers

I =

Z

⌦
f(~x)d~x where the Ω is in Rm and has volume V

The deterministic approach samples the function on a regular grid {~x1, ~x2, . . . , ~xN}

I ⇠ V · 1

N

NX

i=1

f(~xi) = V < f > for large N

The uncertainty on I can be evaluated from the variance V (I) =
V 2

N2

NX

i=1

V (f) = V 2V (f)

N

obtaining �I ⇠ V

p
V (f)p
N

= V
�Np
N

The uncertainty goes as 1/sqrt{N} and it does not depend on the number of dimensions 
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Reducing the variance
There are several method to reduce the variance. Among the most used are: 

Stratification: divide the range of integration in two regions and generate half of the Monte 
Carlo points in each of the regions reduces the variance. The reason is that in this way we 
allow a more uniform sampling of the distribution.  

   
Importance sampling: reweight input distribution to emphasize “high-impact” regions of 
sampling space  transform the sampling space. 
Draw from an alternative distribution whose support/impact is concentrated in the high-impact 
sampling region: 

sampling s from f(s) distribution is equivalent to sampling s*w(s) from g(s) distribution, with 
importance sampling weight w(s) = f(s)/g(s) . (note: f and g should have same support)  

VEGAS: samples points from the probability distribution such that the points are more densely 
distributed in the regions that make the largest contribution to the integral.

Z

F
sf(s)ds =

Z

G
s
f(s)

g(s)
g(s)ds
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Toy simulations

“A good physicist knows how to build toy models.” (Anonymous)  

Toys are used to get a first understanding of a process picking only its essential 
characteristics (here is where the physicist has to be good) and avoiding all 
complications of real experimental life.  

Toys are also an ubiquitous tool used in statistics (e.g. for hypothesis testing ) 
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A different way to compute the uncertainty of an estimator: 

- generate N toy-MCs of the same size n-evts of the data sample (using realistic 
resolutions etc.) —> N sets of [xk] 

- use as a true (input) value for parameter a in the MCs,  the â obtained from data 
- determine in every pseudo-experiment i the estimator âi from maximum L 
- determine the sample variance of â from the N pseudo-experiments 

MLE uncertainty from toys
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