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Background information and model: We measure data points (xmi, ymi), where both
quantities are independently measured. For example, xmi could be the measured value of a
magnetic field and ymi would be the the corresponding Hall voltage. The special situation
considered here is that both quantities have an additive error, i.e.

xmi = xi + εi

ymi = yi + ηi

The errors εi and ηi are assumed to be statistically independent.
We consider the case where a linear functional relationship exists between the exact

values yi and xi. Therefore,
yi = αxi + β (1)

is considered to be a valid model for the measured data with parameters α and β indepen-
dent of the measured data point. The probability distributions for εi and ηi are given by
normal distributions

pdf(εi|σx)dεi = N (εi; 0, σx)dεi

pdf(ηi|σy)dηi = N (ηi; 0, σy)dηi.

The error bars σx and σy are assumed to be known, and to be the same for all data points.
An example dataset is shown in Fig. 1.

General difficulty of this problem. We compare this problem to the standard linear
regression case with the N measured data points (xmi, ymi), where all the xmi ≡ xi are
known exactly. In this case there remain N unknown exact values yi. Given the linear rela-
tion (1), knowledge of the two unknown parameters α and β would allow us to immediately
determine all the unknown exact yi values from the {xi}. The linear fitting function there-
fore reduces the N unknown values {yi} to only two unknown parameters. We can extract
estimates and uncertainties for these two paramters α and β from N > 2 data points.

Now we see the general difficulty of having errors in both variables. Having N measured
data points (xmi, ymi) we start with 2N unknowns, i.e., theN pairs of exact values {(xi, yi)}.
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Abbildung 1: Data with errors in both variables. The goal is to find a straight line fit taking
the errors in both variables into account. For this data, σx = 0.5 and σy = 0.8 are known.

Using the linear relation between the xi and the yi gives N equations, but two additional
parameters, leading to a net reduction of the number of unknown parameters to N + 2,
e.g. the N values {xi} and the two paramters α and β. However, we still have only N data
points, i.e., the system is still underdetermined (rather than overdetermined). This means
that we cannot get a reasonable linear fit and extract the parameters α and β without
supplying additional information about some of the N + 2 unknown parameters. It is clear
that a similar problem would arise, if the errors σx and σy were unknown as well. This
would further increase the number of unknown parameters to N + 4.

A different view of the same problem. We now follow Gull1 in looking at the same
problem from a different angle, which highlights the symmetry between the x- and y-values.

1Stephen F. Gull, Bayesian Data Analysis: Straight-line Fitting in: Maximum Entropy and Bayesian
Methods, J. Skilling (ed.), (Kluwer Academic Publishers, Dordrecht, 1988), pp. 53–74.
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Suppose we consider dimensionless quantities

x′i =
xi − x0
rx

y′i =
yi − y0
ry

,

where x0 and y0 are location parameters and rx > 0 and ry > 0 are scale parameters. The
functional relationship (1) between x′i and y′i can then be written as

ryy
′
i + y0 = α(rxx

′
i + x0) + β.

Identifying

α = ±ry
rx

and β = y0 − αx0

we find the line with slope one (or minus one)

y′i = ±x′i.

We may therefore say, instead of looking for a slope parameter α and an intersection pa-
rameter β, we look for location parameters x0, y0 and scale parameters rx, ry that would
transform our data to a line of slope one (or −1, if α < 0) extending in x′i and y′i symme-
trically around the origin. The error variables εi and ηi transform according to

ε′i =
εi
rx

and η′i =
ηi
ry
.

Correspondingly, their distribution functions are

pdf(ε′i) = N (ε′i; 0, σ′x) and pdf(η′i) = N (η′i; 0, σ′y)

with
σ′x =

σx
rx

and σ′y =
σy
ry

and the measured data are

xmi − x0
rx

= x′i + ε′i and
ymi − y0

ry
= y′i + η′i.

The likelihood function. We further assume the two uncertainties η′i and ε′i to be
statistically independent and obtain the joint distribution

pdf(ε′i, η
′
i|σ′x, σ′y)dε′idη

′
i = N (ε′i; 0, σ′x)N (η′i; 0, σ′y)dε′idη

′
i.
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As a result we have the samping distribution for N data points

pdf({xmi, ymi}|{xi}, x0, y0, rx, ry, σ′x, σ′y)dNxmd
Nym

=
dNxmid

Nymi

(rxry)N

N∏
i=1

N
(
xmi − x0

rx
;x′i, σ

′
x

)
N
(
ymi − y0

ry
;x′i, σ

′
y

)

=
dNxmid

Nymi

(2πσ′xσ
′
yrxry)N

exp

[
−1

2

(∑N
i=1(xmi − xi)2

σx2
+

∑N
i=1(ymi − y0 − ry(xi − x0)/rx)2〉

σy2

)]
.

This likelihood function contains the N parameters xi as so-called nuisance parameters.2 In
addition, we have replaced the original two parameters α and β by four new parameters x0,
y0, rx, and ry, which may seem a bit awkward at a first glance. However, we will see below
that this allows a formulation of the problem that is symmetric under the exchange of x
and y, a symmetry that naturally appears in the problem, because it is usually arbitrary,
which of the two measured quantities we call x and which y.

Prior distributions for x0, y0, rx, and ry. In order to make further progress, we need
a prior distribution function for the N + 4 parameters

pdf({xi}, x0, y0, rx, ry) = pdf(x0, y0, rx, ry)pdf({xi}|x0, y0, rx, ry).

We choose
pdf(x0, y0, ln rx, ln ry) ∝ dx0dy0d(ln rx)d(ln ry),

which is a completely uninformative prior for the location parameters x0 and y0, and for
the scale parameters rx > 0 and ry > 0. For the latter, a uniform distribution in the
logarithm ensures that these quantities are positive. Such a prior is called Jeffreys prior.3

Prior distribution for the {xi}. There remains a prior to be found for the unknown
{xi}. Using a completely uninformative (constant) prior for these variables would leave us
with an unsolvable underdetermined problem, as discussed above. We therefore have to
provide additional information here about the {xi}. We will therefore assume that all the
xi are with large probability within the range ±rx around x0. We see that this leaves great
freedom for the xi to vary within the range, where their values are expected. This is the
additional information that we supply to return to an overdetermined problem in the end.

In order to implement this thought, we use the product of gaussians

pdf({xi}|x0, y0, rx, ry) =

N∏
i=1

N (xi;x0, rx) =
1

(2πr2x)N/2
exp

[
−1

2

∑N
i=1(xi − x0)2

r2x

]
2Nuisance parameters are parameters of a model that are not of immediate interest in the analysis. Here

we are aiming at the determination of α and β. The true positions xi are not of interest to us.
3Sir Harold Jeffreys suggested the use of this prior for (positive) scale parameters in his book Theory of

Probability.
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Note that this prior is completely symmetric in x and y, since our choice of parameters
ensures that (xi−x0)/rx = (yi−y0)/ry. It therefore conforms with our aim of a formulation
of the problem symmetric under the exchange of x and y.

It is a general property of models with nuisance parameters, that a prior distribution
needs to be specified, which will influence the final result. This prior allows us to marginalize
the nuisance parameters later on. The choice of a gaussian prior in our specific case is less
a matter of necessity, but of convenience. We will see that it later allows an analytic
marginalization of the nuisance parameters.

Joint distribution. We can now write down the joint distribution function for data and
parameters as

pdf({xmi, ymi}, {xi}, x0, y0, ln rx, ln ry|σx, σy)

=
1

(8π3σ2xσ
2
yr

2
x)N/2

× exp

[
−1

2

N∑
i=1

(
(xmi − xi)2

σ2x
+

(ymi − y0 − ry(xi − x0)/rx)2

σ2y
+

(xi − x0)2

r2x

)]
.

Integrating out (marginalizing) the nuisance parameters xi. In the next step we
integrate out the nuisance parameters xi. This multidimensional integral separates into N
integrals of the form

rx

∫
dx′i exp

[
−1

2

(
(x′mi − x′i)2

σ′x
2 +

(y′mi − x′i)2

σ′y
2 + x′i

2

)]

=

√
2πσ′xσ

′
yrx√

σ′x
2 + σ′y

2 + σ′x
2σ′y

2
× exp

[
−

(1 + σ′y
2)x′mi

2 − 2x′miy
′
mi + (1 + σ′x

2)y′mi
2

2(σ′x
2 + σ′y

2 + σ′x
2σ′y

2)

]
,

where the exponent is a quadratic form of x0 and y0. The result of the N -fold integration
is therefore the joint distribution for the data and the 4 remaining parameters

pdf({xmi, ymi}, x0, y0, ln rx, ln ry|σx, σy)

=

(
1

4π2
(
r2yσx

2 + r2xσy
2 + σx2σy2

))N/2

×exp

[
−
∑N

i=1

[
(r2y + σy

2)(xmi − x0)2 − 2rxry(xmi − x0)(ymi − y0) + (r2x + σx
2)(ymi − y0)2

]
2(r2yσx

2 + r2xσy
2 + σx2σy2)

]
,

which is a bivariate gaussian distribution for x0 and y0. Note also the symmetry of the
joint distribution with respect of an exchange of x and y.

5



Sufficient statistics. The sum in the numerator of the exponent can be transformed
into sample averages giving

pdf({xmi, ymi}, x0, y0, ln rx, ln ry|σx, σy)

=

(
1

4π2
(
r2yσx

2 + r2xσy
2 + σx2σy2

))N/2

× exp

[
−N

2

(r2y + σy
2)(x0 − xmi)

2 − 2rxry(x0 − xmi)(y0 − ymi) + (r2x + σx
2)(y0 − ymi)

2

r2yσx
2 + r2xσy

2 + σx2σy2

]

× exp

[
−N

2

(r2y + σy
2)Var(xmi)− 2rxry

√
Var(xmi)Var(ymi)ρ+ (r2x + σx

2)Var(ymi)

r2yσx
2 + r2xσy

2 + σx2σy2

]
.

We see that the quantities xmi, ymi, Var(xmi), Var(ymi), and ρ are a sufficient statistic for
the problem, like in standard linear regression where errors are only in y.

We note here that the exponent of the first exponential factor can be expressed as

−N
2

(
x0 − xmi

y0 − ymi

)
1

r2yσx
2 + r2xσy

2 + σx2σy2

(
r2y + σ2y −rxry
−rxry r2x + σ2x

)
︸ ︷︷ ︸

:=M

(
x0 − xmi

y0 − ymi

)
,

where det(M) = 1.

Posterior distribution and estimates of the shift parameters. The posterior dis-
tribution for x0, y0, rx, ry given the data is then

pdf(x0, y0, ln rx, ln ry|{xmi, ymi}, σx, σy)

∝
(
r2yσx

2 + r2xσy
2 + σx

2σy
2
)−N/2

× exp

[
−N

2

(r2y + σy
2)(x0 − xmi)

2 − 2rxry(x0 − xmi)(y0 − ymi) + (r2x + σx
2)(y0 − ymi)

2

r2yσx
2 + r2xσy

2 + σx2σy2

]

× exp

[
−N

2

(r2y + σy
2)Var(xmi)− 2rxry

√
Var(xmi)Var(ymi)ρ+ (r2x + σx

2)Var(ymi)

r2yσx
2 + r2xσy

2 + σx2σy2

]
.

From this posterior we find the estimates for x0 and y0 with their uncertainties

x̂0 = 〈x0〉 = xmi and ŷ0 = 〈y0〉 = ymi

〈∆x20〉 =
σ2x + r2x
N

and 〈∆y20〉 =
σ2y + r2y
N

〈∆x0∆y0〉 =
rxry
N

Note that the estimates taken to be the mean values of x0 and y0 calculated with the
posterior distribution are at the same time maximizing the posterior distribution for any
values of rx and ry. These estimates allow us to plot the shifted data as shown in Fig. 2.
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Abbildung 2: Data shifted by x0 = xmi = 10.68 and y0 = ymi = 25.95.

Estimating the scaling parameters. Integrating out x0 and y0 from the posterior
distribution gives

pdf(ln rx, ln ry|{xmi, ymi}, σx, σy)

∝
(
r2yσx

2 + r2xσy
2 + σx

2σy
2
)−N/2

× exp

[
−N

2

(r2y + σy
2)Var(xmi)− 2rxry

√
Var(xmi)Var(ymi)ρ+ (r2x + σx

2)Var(ymi)

r2yσx
2 + r2xσy

2 + σx2σy2

]
.

We see here that Var(xmi) and Var(ymi) appear as natural scales of the problem. If we
introduce

r′x =
rx√

Var(xmi)
, r′y =

ry√
Var(ymi)

, σ′x =
σx√

Var(xmi)
, σ′y =

σy√
Var(ymi)

,

we obtain

pdf(ln r′x, ln r
′
y|{xmi, ymi}, σ′x, σ′y)

∝
(
r′y

2
σ′x

2
+ r′x

2
σ′y

2
+ σ′x

2
σ′y

2
)−N/2

× exp

[
−N

2

(r′y
2 + σ′y

2)− 2r′xr
′
yρ+ (r′x

2 + σ′x
2)

r′y
2σ′x

2 + r′x
2σ′y

2 + σ′x
2σ′y

2

]
.

We may now estimate the parameters r′x and r′y from the negative logarithm of this posterior
function numerically. The example for our data is shown in Fig. 3. We may check our result
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Abbildung 3: Logarithm of the posterior distribution for rx and ry. The minimum of this
function is at r′x = r′y = 0.95. The red contour line at the value 1 may be used for estimating
the standard errors in these quantities.

by calculating the corresponding estimates for rx and ry. The data can then be plotted in
the scaled coordinates as shown in Fig. 4.

Estimating the slope α of the data. Changing variables to α′ = r′y/r
′
x andR′ =

√
r′xr
′
y

gives

r′x =
R′√
α′

and r′y = R′
√
α′.
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Abbildung 4: The original data shifted by (x0, y0) and scaled by the estimated rx and ry.
The red line corresponds to the diagonal along which the data are expected to be scattered.

It leads to

pdf(lnα′, lnR′|{xmi, ymi}, σ′x, σ′y)

∝
(
R′

2
α′σ′x

2
+R′

2
σ′y

2
/α′ + σ′x

2
σ′y

2
)−N/2

× exp

[
−N

2

R′2α′2 − 2R′2ρα′ + (σ′x
2 + σ′y

2)α′ +R′2

R′2α′2σ′x
2 + (σ′x

2σ′y
2)α′ +R′2σ′y

2

]
.

The minimum of the negative logarithm of this function shown in Fig. 5 is a direct way to
estimate α′ and its uncertainty.

Estimating the intercept parameter β. The quantity β may now be estimated via
the relation β = y0 − αx0 to be

β = ymi − αxmi.
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Abbildung 5: Negative logarithm of the posterior distribution for α′ and R′. The minimum
in this figure is found at α′ = 0.996 and R′ = 0.971. Together with the data variance
Var(xmi) = 30.57 and Var(ymi) = 127.00 this gives an estimate of the slope α = 2.03. The
red contour line may be used to estimate the errors in the two quantities graphically. We
find from the two vertical dashed lines α′ = 0.996± 0.075 translating into α = 2.03± 0.15.

In principle, the uncertainty of the b-estimate would need to be calculated from the posterior
distribution for x0, y0 and α. The integration over x0 and y0 can be performed analytically
and gives

〈∆β2〉x0,y0 =
σ2y + α2σ2x

N
.

As a shortcut we may use, instead of the numerical integration, using Gauss’ error propa-
gation law

〈∆β2〉 =
σ2y + α2

estσ
2
x

N
+ xmi

2〈∆α2〉.

The final result of the fit. Eventually we show the final result of the original data,
together with the fitted line determined above in Fig. 6.
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Abbildung 6: Final result of the fit to data with errors in x and y. The solid red line
represents the fit with α = 2.03 and β = 4.3. The error in β is ∆β = 1.6. The red dashed
lines have slopes α ±∆α = 2.03 ± 0.15 and β = 4.3. The blue dashed line represents the
‘true’ curve y = 2x+ 5 from which the data have been generated.

Python code realizing the minimization.

from csv import reader

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

from scipy.optimize import fmin
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#

# read data from a csv-file

#

readerout = reader(open("errorxydata.csv","rb"),delimiter=’,’);

x = list(readerout);

data = np.array(x).astype(’float’)

xi = data[:,0]

yi = data[:,1]

# Error bars

sigmax = 0.5

sigmay = 0.8

#

# Statistics of the data

#

# number of data points

nn = len(data)

print(’\nStatistics of the data:\nN = %1u data points’% (nn))

# mean of x-values

Meanx = np.mean(xi)

print(’<x> = %1.2f’% (Meanx))

# mean of y-values

Meany = np.mean(yi)

print(’<y> = %1.2f’% (Meany))

# Variance of x-values

Varx = np.var(xi)

print(’Var(x) = %1.2f’% (Varx))

# Variance of y-values

Vary = np.var(yi)

print(’Var(y) = %1.2f’% (Vary))

# Empirical correlation coefficient

rho = np.corrcoef(xi.T,yi.T)[0,1]

print(’rho = %1.4f\n’% (rho))
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# Define the -log-posterior for a and R

def posteriorpdf(parms,sx,sy,rho,n):

a = parms[0]

R = parms[1]

num = R*R*a*a - 2*R*R*rho*a + (sx*sx+sy*sy)*a + R*R

denom = sx*sx*R*R*a*a + sx*sx*sy*sy*a + R*R*sy*sy

p = num/denom

q = sx*sx*R*R*a+sy*sy*R*R/a+sx*sx*sy*sy

return np.log(R*a) + (n/2.)*np.log(q) + (n/2.)*p

# Minimization of the -log-posterior

print(’Estimating scaled parameters:’)

parms,Qmin,_,_,_ = fmin(posteriorpdf,[1.,1.],args=(sigmax/np.sqrt(Varx),sigmay/np.sqrt(Vary),rho,nn,),full_output=True)

aa = parms[0]

RR = parms[1]

# plot the -log-posterior

a = np.arange(0.93,1.07,0.001)

R = np.arange(0.7,1.3,0.01)

Q = np.zeros(shape=(len(R),len(a)))

X,Y = np.meshgrid(a,R)

for n in range(0,len(a)):

for m in range(0,len(R)):

Q[m,n] = posteriorpdf([a[n],R[m]],sigmax/np.sqrt(Varx),sigmay/np.sqrt(Vary),rho,nn)-Qmin

plt.figure(

num=2,

figsize=(7,5.08),

dpi=80,

facecolor=’white’)

mpl.rcParams[’axes.linewidth’]=2

plt.axes([0.15,0.18,0.82,0.70],

axisbg=’lightgray’)

CS = plt.contourf(X,Y,Q,100)

# We draw two contour lines into the plot, the smaller of which is suitable for reading the standard errors

CS2 = plt.contour(CS,levels=[0.2,1,2,3],colors=(’w’,’r’,’w’,’w’),linewidths=(2,),hold=’on’)

plt.clabel(CS2, inline=1, fmt=’%1.1f’, fontsize=16)

plt.plot(aa,RR,’wo’)

plt.title(’-log-posterior’,fontsize=24)
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plt.xlabel(r’$a\sqrt{\mathrm{Var}(x)/\mathrm{Var}(y)}$’,

fontsize=24)

plt.ylabel(r’$R/(\mathrm{Var}(x)\mathrm{Var}(y))^{1/4}$’,

fontsize=24)

cbar = plt.colorbar(CS)

cbar.ax.set_ylabel(r’$Q(a,R)$’,fontsize=24)

plt.show()

# We determine the standard error of the parameters from the contour line

cc = CS2.collections[1].get_paths()[0]

CC = cc.vertices

sam = aa-min(CC[:,0])

sap = max(CC[:,0])-aa

sRm = RR-min(CC[:,1])

sRp = max(CC[:,1])-RR

print(’Scaled parameters:’)

print(’a\’ = %1.3f +%1.3f/-%1.3f’% (aa,sap,sam))

print(’R\’ = %1.2f +%1.2f/-%1.2f\n’% (RR,sRp,sRm))

# Calculating the slope and the intercept parameter and their errors

print(’Estimated parameters:’)

aest = aa*np.sqrt(Vary/Varx)

sam1 = sam*np.sqrt(Vary/Varx)

sap1 = sap*np.sqrt(Vary/Varx)

print(’a = %1.3f +%1.3f/-%1.3f’% (aest,sap1,sam1))

best = Meany - Meanx*aest

bstd = np.sqrt( (sigmay*sigmay+sigmax*sigmax*aest)/nn + Meanx*Meanx*sam1*sap1)

print(’b = %1.2f +/-%1.2f’% (best,bstd))

#

# Plot data with error bars and fitted line

#

x = np.arange(min(xi),max(xi),0.1)

y = aest*x + best

plt.figure(

num=1,

figsize=(7,5.08),

dpi=80,

facecolor=’white’)
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mpl.rcParams[’axes.linewidth’]=2

plt.axes([0.15,0.18,0.82,0.70],

axisbg=’lightgray’)

plt.errorbar(xi, yi, xerr=sigmax, yerr=sigmay, fmt=’o’)

plt.plot(x,y,’r’,linewidth=2)

plt.axis([0,21,5,45])

plt.xticks([0,10,20],

fontsize=24,

fontname=’Times New Roman’)

plt.yticks([10,20,30,40],

fontsize=24,

fontname=’Times New Roman’)

plt.tick_params(width=2,length=10)

plt.xlabel(r’$x$’,

fontsize=24)

plt.ylabel(r’$y$’,

fontsize=24)

plt.title(’Data with errors in x and y’,fontsize=24)

plt.text(2,40,r"$y = a x + b$",

fontsize=24,

fontname=’Times New Roman’)

plt.text(2,35,r"$a = 2.039\pm$",

fontsize=24,

fontname=’Times New Roman’)

plt.text(8,36.8,r"$0.076$",

fontsize=24,

fontname=’Times New Roman’)

plt.text(8,33.2,r"$0.073$",

fontsize=24,

fontname=’Times New Roman’)

plt.text(2,30,r"$b = 4.17\pm 0.83$",

fontsize=24,

fontname=’Times New Roman’)

plt.show()
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