
Error Propagation

Normal distribution
In [1]: import numpy as np

import matplotlib.pyplot as plt

We generate random numbers drawn from a standard normal distribution, i.e. from

In [2]: rns = np.random.randn(1000000)

These numbers can be plotted in a histogram for which we specify the number of bins and the range
. The option normed=True normalizes the bin heigths such that the integral of the histogram is one. Note

that if you specify the range for the histogram, it will be normalized within this range. This makes it necessary to
choose the range large enough to cover the full distribution including the tails.

In [3]: plt.figure(1)
plt.hist(rns,bins=100,range=[-5,5],normed=True);
x=np.arange(-3,3,0.01);
y=1/np.sqrt(2*np.pi)*np.exp(-x**2/2)
plt.plot(x,y,linewidth=2,color='red')
plt.title('Standard normal distribution')
plt.xlabel('x')
plt.ylabel('pdf(x)')
plt.show()

(μ = 0, σ = 1)

prob(x|μ = 0, σ = 1) = pdf(x|μ = 0, σ = 1)dx = exp(−).
dx
2π‾‾‾√

x2

2

n = 100
[−5, 5]

Suppose we are now interested in the distribution of

In general, we find such a distribution from the distribution by requiring

Step 1: calculate the total differential dy. We have

Step 2: insert it into the equation.

Step 3: insert on the right hand side. Here we have

Note that in general, the transformation function must have an inverse. This gives

In order to test our result, we apply the transformation rule

to the random numbers chosing and , and plot the resulting histogram together with the
calculated probability density function .

In [4]: plt.figure(1)
plt.hist(0.1*rns+1,bins=100,range=(0.5,1.5),normed=True);
x=np.arange(0.5,1.5,0.001);
y=1/np.sqrt(2*np.pi*0.01)*np.exp(-(x-1)**2/2/0.01)
plt.plot(x,y,linewidth=2,color='red')
plt.axis([0.5,1.5,0,4])
plt.title(r'Normal Distribution, $\mu=1$, $\sigma=0.1$')
plt.xlabel('x')
plt.ylabel('pdf(x)')
plt.show()

Exponential decay on a logarithmic scale

y = σx + μ.
g(y) f (x)

f (x)|dx| = g(y)|dy|.

dy = σdx.

f (x)dx = g(y)σdx ⇒ g(y) = f (x).
1
σ

x(y)
x = .

y − μ
σ

g(y) = exp(−).
1

2πσ2‾ ‾‾‾‾√

1
2 ()y − μ

σ

2

x → y = σx + μ
σ = 0.1 μ = 1

g(y)

We apply the same coordinate transformation technique to another problem that commonly occurs in the lab.
Suppose you have measured a quantity which is supposed to follow the exponential law

The goal is to determine from the experimentally determined data . You assume that the have an
addititve error, which is normally distributed. Your colleague suggests that you plot the measured values on a
logarithmic scale and then do standard linear regression for determining . The new variable is therefore

which gives the linear relation

What is the distribution of the errors in ?

We answer this question by transforming the normal distribution to the logarithmic scale.

Step 1:

Step 2:

Step 3:

Inserting the normal distribution, we find

Again we compare this analytic result with the histogram representation of the transformed random samples.

In [5]: plt.figure(1)
plt.hist(np.log(0.1*rns+1),bins=100,range=(-1,1),normed=True);
x=np.arange(-1,1,0.001);
y=np.exp(x)/np.sqrt(2*np.pi*0.01) * np.exp(-(np.exp(x)-1)**2/2/0.01)
plt.plot(x,y,linewidth=2,color='red')
plt.axis([-0.5,0.5,0,4.5])
plt.xlabel('ln(x)')
plt.ylabel(r'$\mathrm{pdf}(\ln x)$')
plt.show()

We see that the resulting distribution is not a normal distribution. Furthermore, the normal distribution is not a
good approximation because of the asymmetry. This implies that ordinary linear regression cannot be applied to
the problem on the logarithmic scale! You better do non-linear data fitting of the exponential function within the
framework of gaussian error analysis.

x(t)
x(t) = exp(−γt).

γ (,)ti xi xi
x

γ
y = ln(x),

y = −γt.
y

dy = .
dx
x

f (x)dx = g(y) ⇒ g(y) = |x|f (x).
dx
|x|

x = exp(y) ⇒ g(y) = exp(y)f [exp(y)].

g(y) = exp(y) exp(−)1
2πσ2‾ ‾‾‾‾√

(exp(y) − μ)2

2σ2

Reciprocal normal distribution

Suppose we perform an experiment in which an object travels with constant velocity along a length . We
measure the velocity of the object with a newly developed speedometer and wish to determine the travel time
from

The speedometer has an uncertainty of . In a particular experiment the speedometer reads the value
. What is the uncertainty of the travel time?

Here we are interested in the distribution of , where is normally distributed with mean and
standard deviation . The distribution of can be found from our random numbers:

In [6]: plt.hist(1/(rns+1),bins=300,range=[-10,10],normed=True,stacked=True);
plt.xlabel('t (s)')
plt.ylabel(r'$\mathrm{pdf}(t)$')

We see that the distribution has a quite complicated shape with a suppressed probability around zero, and
long tails towards large positive and negative values. Furthermore, the distribution has two maxima. It can be
shown that this distribution does neither have a mean nor a variance.

We find the analytic form of this distribution using the transformation

Step 1: Calculate the differential . We have

Step 2: Insert it into the equation

Step 3: replace by . We find

Inserting the normal distribution, we find

We again check this result against the histogram of the transformed random numbers.

L = 1 m
v

t = .
L
v

1 m/s
v = 1 m/s

y = 1/(x + 1) x μ = 0
σ = 1 y

Out[6]: <matplotlib.text.Text at 0x1122d4990>

g(z)

x → y = 1/x.
dy

dy = − .
dx
x2

f (x)|dx| = g(y) ⇒ g(y) = f (x).
|dx|
x2 x2

x x(y) = 1/y

g(y) = f (1/y).
1
y2

g(y) = exp(−).
1

y2 2πσ2‾ ‾‾‾‾√

(y − 1/μμ2)2

2σ2y2

In [7]: x = np.arange(-10,10,0.01)
g = np.exp(-(x - 1)**2 / (2*x*x)) / (np.sqrt(2*np.pi) * x*x)
plt.figure(1)
plt.plot(x,g,color='red',linewidth=2);
plt.hist(1/(rns+1),bins=100,range=[-10,10],normed=True,stacked=True);
plt.xlabel('t (s)')
plt.ylabel(r'$\mathrm{pdf}(t)$')
plt.show()

Dissipated power

We drive an unknown current through a resistor , which was determined in a calibration measurement to be
. The measured voltage drop across the resistor is . Estimate the power

dissipated in the resistor.

We solve this problem entirely using the histogram method:

In [8]: rns1 = np.random.randn(1000000)
rns2 = np.random.randn(1000000)
randomU = rns1*0.1 + 10;
randomR = rns2*1 + 10;
plt.figure(1)
plt.hist(randomU*randomU/randomR,bins=100,normed=True,stacked=True);
plt.xlabel('P (W)')
plt.ylabel(r'$\mathrm{pdf}(P)$')
plt.show()

R
R = (10 ± 1) Ω U = (10 ± 0.1) V

P =
U 2

R

From the histogram we find the maximum of the distribution, and the width, where the distribution has reduced to
 of its peak value. We see that the distribution is not symmetric. The error in positive direction from the

maximum will therefore be larger than the error in negative direction.

We show how a detailed inspection of the histogram can be done:

Step 1: determine the maximum. For this purpose we blow up the region around the maximum and make sure
that we have a bin-width that is easy to determine. In our case we choose a bin-width of .

In [9]: plt.figure(1)
plt.hist(randomU*randomU/randomR,bins=40,normed=True,range=(9.025,11.025)
,stacked=True);
plt.xlabel('P (W)')
plt.show()

We read .

The width of the distribution has to be taken at

In [10]: 0.4*np.exp(-1/2.)

exp(−1/2)

0.1

P = 9.85 W

Out[10]: 0.24261226388505339

In [11]: plt.figure(1)
plt.hist(randomU*randomU/randomR,bins=100,normed=True,stacked=True);
plt.plot([6,20],[0.4*np.exp(-1/2.),0.4*np.exp(-1/2.)],color='red',linewid
th=2)
plt.plot([9,9],[0,0.3],color='red',linewidth=2)
plt.plot([10.9,10.9],[0,0.3],color='red',linewidth=2)
plt.xlabel('P (W)')
plt.show()

In [12]: 10.9-9.85

In [13]: 9.85-9.

Our estimate is therefore .

Out[12]: 1.0500000000000007

Out[13]: 0.8499999999999996

P = (9.85 + 1.05/ − 0.85) W

