
9 Straight-line fitting with errors in both variables

Background information and model: We measure data points (xmi, ymi), where both
quantities are independently measured. For example, xmi could be the measured value of a
magnetic field and ymi would be the the corresponding Hall voltage. The special situation
considered here is that both quantities have an additive error, i.e.

xmi = xi + εi

ymi = yi + ηi

We consider the case where a linear functional relationship exists between the exact values
yi and xi. Therefore,

yi = αxi + β (58)

is considered to be a valid model for the measured data with parameters α and β indepen-
dent of the measured data point. The probability distributions for εi and ηi are given by
normal distributions

pdf(εi|σx)dεi = N (εi; 0, σx)dεi

pdf(ηi|σy)dηi = N (ηi; 0, σy)dηi.

An example dataset is shown in Fig. 52.

A different view of the same problem. We now follow Gull7 in looking at the same
problem from a different angle, which highlights the symmetry between the x- and y-values.
Suppose we consider dimensionless quantities

x′i =
xi − x0

rx

y′i =
yi − y0

ry
,

where x0 and y0 are location parameters and rx > 0 and ry > 0 are scale parameters. The
functional relationship (58) between x′i and y′i can then be written as

ryy
′
i + y0 = α(rxx

′
i + x0) + β.

Identifying

α = ±ry
rx

and β = y0 − αx0

7Stephen F. Gull, Bayesian Data Analysis: Straight-line Fitting in: Maximum Entropy and Bayesian Me-
thods, J. Skilling (ed.), (Kluwer Academic Publishers, Dordrecht, 1988), pp. 53–74.
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Abbildung 52: Data with errors in both variables. The goal is to find a straight line fit
taking the errors in both variables into account. For this data, σx = 0.5 and
σy = 0.8 are known.

we find the line with slope one (or minus one)

y′i = ±x′i.

We may therefore say, instead of looking for a slope parameter α and an intersection pa-
rameter β, we look for location parameters x0, y0 and scale parameters rx, ry that would
transform our data to a line of slope one (or −1, if α < 0) extending in x′i and y′i symme-
trically around the origin. The error variables εi and ηi transform according to

ε′i =
εi
rx

and η′i =
ηi
ry
.

Correspondingly, their distribution functions are

pdf(ε′i) = N (ε′i; 0, σ′x) and pdf(η′i) = N (η′i; 0, σ′y)
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with
σ′x =

σx
rx

and σ′y =
σy
ry

and the measured data are

xmi − x0

rx
= x′i + ε′i and

ymi − y0

ry
= y′i + η′i.

The likelihood function. We further assume the two uncertainties η′i and ε′i to be stati-
stically independent and obtain the joint distribution

pdf(ε′i, η
′
i|σ′x, σ′y)dε′idη′i = N (ε′i; 0, σ′x)N (η′i; 0, σ′y)dε

′
idη
′
i.

As a result we have the samping distribution for N data points

pdf({xmi, ymi}|{xi}, x0, y0, rx, ry, σ
′
x, σ
′
y)d

Nxmd
Nym

=
dNxmid

Nymi

(rxry)N

N∏
i=1

N
(
xmi − x0

rx
;x′i, σ

′
x

)
N
(
ymi − y0

ry
;x′i, σ

′
y

)

=
dNxmid

Nymi

(2πσ′xσ
′
yrxry)

N
exp

[
−1

2

(∑N
i=1(xmi − xi)2

σx2
+

∑N
i=1(ymi − y0 − ry(xi − x0)/rx)2〉

σy2

)]
.

This likelihood function contains the N parameters xi as so-called nuisance parameters.8 In
addition, we have replaced the original two parameters α and β by four new parameters x0,
y0, rx, and ry, which may seem a bit awkward at a first glance. However, we will see below
that this allows a formulation of the problem that is symmetric under the exchange of x
and y, a symmetry that naturally appears in the problem, because it is usually arbitrary,
which of the two measured quantities we call x and which y.

Prior distributions. In order to make further progress, we need a prior distribution func-
tion for the N + 4 parameters

pdf({xi}, x0, y0, rx, ry) = pdf(x0, y0, rx, ry)pdf({xi}|x0, y0, rx, ry).

We choose
pdf(x0, y0, ln rx, ln ry) ∝ dx0dy0d(ln rx)d(ln ry),

8Nuisance parameters are parameters of a model that are not of immediate interest in the analysis. Here
we are aiming at the determination of α and β. The true positions xi are not of interest to us.
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which is a completely uninformative prior for the location parameters x0 and y0, and for
the scale parameters rx > 0 and ry > 0. For the latter, a uniform distribution in the
logarithm ensures that these quantities are positive. Such a prior is called Jeffreys prior.9

For the remaining prior, we use the product of gaussians

pdf({xi}|x0, y0, rx, ry) =
N∏
i=1

N (xi;x0, rx) =
1

(2πr2
x)N/2

exp

[
−1

2

∑N
i=1(xi − x0)2

r2
x

]
Note that this prior is completely symmetric in x and y, since our choice of parameters
ensures that (xi−x0)/rx = (yi−y0)/ry. It therefore conforms with our aim of a formulation
of the problem symmetric under the exchange of x and y.

It is a general property of models with nuisance parameters, that a prior distribution
needs to be specified, which will influence the final result. Only this prior allows us to
marginalize the nuisance parameters later on. The choice of a gaussian prior in our specific
case is less a matter of necessity, but of convenience. We will see that it later allows an
analytic marginalization of the nuisance parameters.

Joint distribution. We can now write down the joint distribution function for data and
parameters as

pdf({xmi, ymi}, {xi}, x0, y0, ln rx, ln ry|σx, σy)

=
1

(8π3σ2
xσ

2
yr

2
x)N/2

× exp

[
−1

2

N∑
i=1

(
(xmi − xi)2

σ2
x

+
(ymi − y0 − ry(xi − x0)/rx)2

σ2
y

+
(xi − x0)2

r2
x

)]
.

Integrating out the nuisance parameters xi. In the next step we integrate out the nui-
sance parameters xi. This multidimensional integral separates into N integrals of the form

rx

∫
dx′i exp

[
−1

2

(
(x′mi − x′i)2

σ′x
2 +

(y′mi − x′i)2

σ′y
2 + x′i

2

)]

=

√
2πσ′xσ

′
yrx√

σ′x
2 + σ′y

2 + σ′x
2σ′y

2
× exp

[
−

(1 + σ′y
2)x′mi

2 − 2x′miy
′
mi + (1 + σ′x

2)y′mi
2

2(σ′x
2 + σ′y

2 + σ′x
2σ′y

2)

]
,

9Sir Harold Jeffreys suggested the use of this prior for (positive) scale parameters in his book Theory of
Probability.
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where the exponent is a quadratic form of x0 and y0. The result of the N -fold integration
is therefore the joint distribution for the data and the 4 remaining parameters

pdf({xmi, ymi}, x0, y0, ln rx, ln ry|σx, σy)

=

(
1

4π2
(
r2
yσx

2 + r2
xσy

2 + σx2σy2
))N/2

×exp

[
−
∑N

i=1

[
(r2
y + σy

2)(xmi − x0)2 − 2rxry(xmi − x0)(ymi − y0) + (r2
x + σx

2)(ymi − y0)2
]

2(r2
yσx

2 + r2
xσy

2 + σx2σy2)

]
,

which is a bivariate gaussian distribution for x0 and y0. Note also the symmetry of the
joint distribution with respect of an exchange of x and y.

Sufficient statistics. The sum in the numerator of the exponent can be transformed into
sample averages giving

pdf({xmi, ymi}, x0, y0, ln rx, ln ry|σx, σy)

=

(
1

4π2
(
r2
yσx

2 + r2
xσy

2 + σx2σy2
))N/2

× exp

[
−N

2

(r2
y + σy

2)(x0 − xmi)
2 − 2rxry(x0 − xmi)(y0 − ymi) + (r2

x + σx
2)(y0 − ymi)

2

r2
yσx

2 + r2
xσy

2 + σx2σy2

]

× exp

[
−N

2

(r2
y + σy

2)Var(xmi)− 2rxry
√

Var(xmi)Var(ymi)ρ+ (r2
x + σx

2)Var(ymi)

r2
yσx

2 + r2
xσy

2 + σx2σy2

]
.

We see that the quantities xmi, ymi, Var(xmi), Var(ymi), and ρ are a sufficient statistic for
the problem, like in standard linear regression where errors are only in y.

We note here that the exponent of the first exponential factor can be expressed as

−N
2

(
x0 − xmi

y0 − ymi

)
1

r2
yσx

2 + r2
xσy

2 + σx2σy2

(
r2
y + σ2

y −rxry
−rxry r2

x + σ2
x

)
︸ ︷︷ ︸

:=M

(
x0 − xmi

y0 − ymi

)
,

where det(M) = 1.
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Posterior distribution and estimates of the shift parameters. The posterior distribution
for x0, y0, rx, ry given the data is then

pdf(x0, y0, ln rx, ln ry|{xmi, ymi}, σx, σy)

∝
(
r2
yσx

2 + r2
xσy

2 + σx
2σy

2
)−N/2

× exp

[
−N

2

(r2
y + σy

2)(x0 − xmi)
2 − 2rxry(x0 − xmi)(y0 − ymi) + (r2

x + σx
2)(y0 − ymi)

2

r2
yσx

2 + r2
xσy

2 + σx2σy2

]

× exp

[
−N

2

(r2
y + σy

2)Var(xmi)− 2rxry
√

Var(xmi)Var(ymi)ρ+ (r2
x + σx

2)Var(ymi)

r2
yσx

2 + r2
xσy

2 + σx2σy2

]
.

From this posterior we find the estimates for x0 and y0 with their uncertainties

〈x0〉 = xmi and 〈y0〉 = ymi

〈∆x2
0〉 =

σ2
x + r2

x

N
and 〈∆y2

0〉 =
σ2
y + r2

y

N
〈∆x0∆y0〉 =

rxry
N

Note that the estimates taken to be the mean values of x0 and y0 calculated with the
posterior distribution are at the same time maximizing the posterior distribution for any
values of rx and ry. These estimates allow us to plot the shifted data as shown in Fig. 53.

-10 10 20
x-x0

-20

-10

10

20

y-y0

Abbildung 53: Data shifted by x0 = xmi = 10.68 and y0 = ymi = 25.95.
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Estimating the scaling parameters. Integrating out x0 and y0 from the posterior distri-
bution gives

pdf(ln rx, ln ry|{xmi, ymi}, σx, σy)

∝
(
r2
yσx

2 + r2
xσy

2 + σx
2σy

2
)−N/2

× exp

[
−N

2

(r2
y + σy

2)Var(xmi)− 2rxry
√

Var(xmi)Var(ymi)ρ+ (r2
x + σx

2)Var(ymi)

r2
yσx

2 + r2
xσy

2 + σx2σy2

]
.

We see here that Var(xmi) and Var(ymi) appear as natural scales of the problem. If we
introduce

r′x =
rx√

Var(xmi)
, r′y =

ry√
Var(ymi)

, σ′x =
σx√

Var(xmi)
, σ′y =

σy√
Var(ymi)

,

we obtain

pdf(ln r′x, ln r
′
y|{xmi, ymi}, σ′x, σ′y)

∝
(
r′y

2
σ′x

2
+ r′x

2
σ′y

2
+ σ′x

2
σ′y

2
)−N/2

× exp

[
−N

2

(r′y
2 + σ′y

2)− 2r′xr
′
yρ+ (r′x

2 + σ′x
2)

r′y
2σ′x

2 + r′x
2σ′y

2 + σ′x
2σ′y

2

]
.

We may now estimate the parameters r′x and r′y from the negative logarithm of this posterior
function numerically. The example for our data is shown in Fig. 54. We may check our result
by calculating the corresponding estimates for rx and ry. The data can then be plotted in
the scaled coordinates as shown in Fig. 55.

Estimating the slope α of the data. Changing variables to α′ = r′y/r
′
x and R′ =

√
r′xr
′
y

gives

r′x =
R′√
α′

and r′y = R′
√
α′.

It leads to

pdf(lnα′, lnR′|{xmi, ymi}, σ′x, σ′y)

∝
(
R′

2
α′σ′x

2
+R′

2
σ′y

2
/α′ + σ′x

2
σ′y

2
)−N/2

× exp

[
−N

2

R′2α′2 − 2R′2ρα′ + (σ′x
2 + σ′y

2)α′ +R′2

R′2α′2σ′x
2 + (σ′x

2σ′y
2)α′ +R′2σ′y

2

]
.

The minimum of the negative logarithm of this function shown in Fig. 56 is a direct way
to estimate α′ and its uncertainty.
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Abbildung 54: Logarithm of the posterior distribution for rx and ry. The minimum of this
function is at r′x = r′y = 0.95. The red contour line at the value 1 may be

used for estimating the standard errors in these quantities.

Estimating the intercept parameter β. The quantity β may now be estimated via the
relation β = y0 − αx0 to be

β = ymi − αxmi.

In principle, the uncertainty of the b-estimate would need to be calculated from the posterior
distribution for x0, y0 and α. The integration over x0 and y0 can be performed analytically
and gives

〈∆β2〉x0,y0 =
σ2
y + α2σ2

x

N
.

As a shortcut we may use, instead of the numerical integration, using Gauss’ error propa-
gation law

〈∆β2〉 =
σ2
y + α2

estσ
2
x

N
+ xmi

2〈∆α2〉.
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Abbildung 55: The original data shifted by (x0, y0) and scaled by the estimated rx and ry.
The red line corresponds to the diagonal along which the data are expected
to be scattered.

The final result of the fit. Eventually we show the final result of the original data,
together with the fitted line determined above in Fig. 57.
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Abbildung 56: Negative logarithm of the posterior distribution for α′ and R′. The minimum
in this figure is found at α′ = 0.996 and R′ = 0.971. Together with the data
variance Var(xmi) = 30.57 and Var(ymi) = 127.00 this gives an estimate of
the slope α = 2.03. The red contour line may be used to estimate the errors
in the two quantities graphically. We find from the two vertical dashed lines
α′ = 0.996± 0.075 translating into α = 2.03± 0.15.
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Abbildung 57: Final result of the fit to data with errors in x and y. The solid red line
represents the fit with α = 2.03 and β = 4.3. The error in β is ∆β = 1.6.
The red dashed lines have slopes α ± ∆α = 2.03 ± 0.15 and β = 4.3. The
blue dashed line represents the ‘true’ curve y = 2x+ 5 from which the data
have been generated.
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