
8 How to compare models

8.1 General approach

In some cases it would be nice to know the probability that a model M used in the analysis
of data y is indeed the correct model. This means that we would like to know the probability

prob(M |y, I).

The problem, however, is here, how to normalize this distribution. We would have to sum
over all possible models, but we do not know them! A way to avoid the normalization
problem is, to compare such probabilities by taking ratios. This procedure leads to the
so-called significance tests.

Suppose we have two different physically motivated models M1 and M2 at hand. We
would like to know, which of the two models is more strongly supported by the measured
data y. Then we may look at the probability ratio

prob(M1|y, I)

prob(M2|y, I)
.

This quantity is still quite asymmetric regarding the two models. We would prefer M1 over
M2, if this ratio takes values between 1 and ∞, but we would prefer M2 over M1, if the
ratio is between zero and one. A more symmetric measure is the logarithm

ln
prob(M1|y, I)

prob(M2|y, I)

of the above ratio. In this case we would prefer M1 over M2, if this quantity is larger than
zero, and we would prefer M2 over M1, if it is smaller than zero. Note that prefering one
model over the other does not at all mean to reject the other model!

Using Bayes’ theorem in the form

prob(Mi|y, I) =
prob(Mi|I)prob(y|Mi, I)

prob(y|I)
. (52)

we can rewrite the expression giving

ln
prob(M1|y, I)

prob(M2|y, I)
= ln

prob(M1|I)

prob(M2|I)
+ ln

prob(y|M1, I)

prob(y|M2, I)
. (53)

While the first term on the right hand side describes our preference for M1 and M2 before
we know the data y, the second term is the logarithm of the ratio of the evidences for y
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given the two alternative models. The ratio of evidences is called the Bayes factor. The first
term is only of relevance, if we have any prior information (e.g., a previous measurement)
that would make us prefer one model over the other. If this is not the case, we would
give equal prior probabilities to the two models, and the logarithm of their ratio would
therefore be zero. Given no prior preference, we would therefore prefer the model that is
more likely having produced the data y. Figure 51 visualizes the basic model comparison
rule in eq. (51) under the assumption that we have no prior preference for any of the two
models. In general, a more complex, or more flexible model, like model 2 in the figure,

Model 1
Model 2

model 1
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model 2

data y

p(y|M)

Abbildung 51: Schematic visualization of the model comparison rule in eq. (modelsel), as-
suming that the prior probabilities of the two models are identical. Model
2 is preferred over model 1 in all regions of data space, except for the gray-
shaded region, where model 1 is preferred over model 2.

will spread its probability distribution over a larger range in data space, because it is able
to generate a larger range of data, but it must be normalized to 1. In contrast a simpler
more stringent model cannot produce data in such a large range, but as a consequence, the
probability density is higher in that region, compared to model 2. Depending on where on
the data axis the specific data is that we have obtained, we will prefer the model with the
higher probability density in this location.

The evidences are given by

prob(y|Mi, I) =

∫
dθiprob(θi|Mi, I)prob(y|θi,Mi, I), (54)
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where θi represents the set of parameters of model Mi. We see here that the prior pro-
bability influences the distribution of the evidence. In this sense it is an integral part of
the model. For example, we may consider two models that share a common likelihood, but
differ in their prior probability distributions.

First Example. Consider the measurement of the length of an object using a ruler. Sup-
pose we have prior knowledge about the length of the ruler given by a gaussian distribution
centered around L0 and width σL. The likelihood for measuring a particular value ` is also
taken to be a normal distribution centered around the true value with reading error σ, the
precision of the measurement. For this case, the evidence can be worked out to be

prob(`|L0, σL, σ,M, I) =
1√

2π(σ2
L + σ2)

exp

(
− (`− L0)2

2(σ2
L + σ2)

)
.

Suppose we have two people, Alice and Bob, who agree on the values of σ and σL, but
have different opinions about the value of L0. Alice says it is L0A (model M1), Bob says it
is L0B (model M2). They decide to settle their dispute by asking an (independent) student
to read a new value `. They would then work out the quantity

ln
prob(M1|y, I)

prob(M2|y, I)
=

(`− L0B)2 − (`− L0A)2

2(σ2
L + σ2)

If the new value ` is closer to L0A, then the fraction is positive making us prefer Alice’s
model M1 over Bobs model M2, and vice versa for ` being closer to L0B. It is also interesting
to see that the total variance σ2

L+σ2 sets the scale on which the difference in the numerator
is measured.

Second example. As a second example, consider the case in which Alice and Bob agree
on L0, but disagree on σ2

L + σ2. Alice is more conservative and suggests a σA which is
bigger than σB. In this case they would work out

ln
prob(M1|y, I)

prob(M2|y, I)
= ln

σB
σA

+
(`− L0)2

2

(
1

σ2
B

− 1

σ2
A

)
.

The second term on the right hand side is positive, and therefore always favors the more
conservative model of Alice. The first term, however, gives Bob’s model a little advantage.
As a result, if

(`− L0)2 >

(
1

σ2
B

− 1

σ2
A

)−1

ln
σ2
A

σ2
B

,
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we would prefer Alices model over Bobs. Only if there is sufficient reason (in the sense
that the new observation deviates significantly from L0) do we have a reason to prefer the
model with the larger uncertainty. Putting in numbers: suppose σA = eσB (e ≈ 2.7). Then
we prefer Alices model, if |` − L0| > 1.5σB. If σA = 90σB, then we would prefer Alice’s
model, if |` − L0| > 3σB. These examples show that our tool for model comparison gives
clear quantitative answers and leads to most reasonable results.

8.2 Beyond the evidence

Equation (53) can be further transformed into

ln
prob(M1|y, I)

prob(M2|y, I)
= ln

prob(M1|I)

prob(M2|I)
+ ln

∫
dθ1prob(θ1,y|M1, I)∫
dθ2prob(θ2,y|M2, I)

= ln
prob(M1|I)

prob(M2|I)
+ ln

∫
dθ1prob(θ1|M1, I)prob(y|θ1,M1, I)∫
dθ2prob(θ2|M2, I)prob(y|θ2,M2, I)

.

We see that the probability products under the integrals are known from parameter esti-
mation problems. Suppose now that we have determined θ̂1 and θ̂2 from the maximum
likelihood estimate

θ̂i = arg min
θi
{− ln prob(y|θi,Mi, I)} (55)

Then we may write the integrals as∫
dθiprob(θi|Mi, I)prob(y|θi,Mi, I) =

prob(y|θ̂i,Mi, I)

∫
dθiprob(θi|Mi, I)

prob(y|θi,Mi, I)

prob(y|θ̂i,Mi, I)

giving

ln
prob(M1|y, I)

prob(M2|y, I)
= ln

prob(M1|I)

prob(M2|I)
+ ln

prob(y|θ̂1,M1, I)

prob(y|θ̂2,M2, I)

+ ln

∫
dθ1prob(θ1|M1, I)prob(y|θ1,M1, I)/prob(y|θ̂1,M1, I)∫
dθ2prob(θ2|M2, I)prob(y|θ2,M2, I)/prob(y|θ̂2,M2, I)

. (56)

In this expression, the second term generates preference for the model with the larger
maximum likelihood. The interpretation of the last term is less obvious. Its value does not
only depend on the likelihood, but also on the width of the prior pdf, and on the number
of parameters of each model.
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8.3 Model comparison: an example

We will illustrate the above general concept by picking up an example from one of the
previous lectures, where for the determination of the gravitational acceleration g, a set of
data y = {(zi, ti)} with N = 31 points was measured. Two alternative fitting functions
were used, namely

ti = f1(zi; g) =

√
2zi
g

(model 1),

with fit parameter g, and

ti = f2(zi; g, z0) =

√
2(zi − z0)

g
(model 2),

with fit parameters g and z0. In both cases we used a least mean square fit implying the
likelihood function for model 1

prob(y|g, σ,M, I) =
1

(2πσ2)N/2
exp

(
−NQ1(g)

2σ2

)
. (57)

In case of model 2, Q1(g) is replaced by Q2(g, z0).

If we give no prior preference to any of the two models, eq. (56) becomes after some
calculations

ln
prob(M1|y, I)

prob(M2|y, I)
=
N − 1

2
ln
Q2,min

Q1,min

+ ln

(
σz√

2Q2,min

√
AB − C2

q

)
+ ln

Γ((N − 1)/2)

Γ((N − 2)/2)
.

The quantities A, B, and C are the elements of the Hesse matrix (the matrix of second
derivatives) of Q2(g, z0) evaluated at the minimum of this function. Correspondingly, the
quantity q is the second derivative of Q1(g) evaluated at its minimum. The first term in
this result favors the model that fits the data better. The second and third term, however,
punish the use of the additional parameter z0 in model 2. Numerically, the last term favors
M1 weakly with a value of 3.78. The first term, however, favors M2 strongly with -73.89. We
further find

√
AB − C2 = 0.00905 s4/m2,

√
Q2,min = 0.215 ms,

√
q = 0.02616 s3/m. We see

that the second term depends on the width σz that we assign to the prior pdf of z0. Given
our background information about the experiment, we can be quite sure that σz = 1 m is
certainly not too optimistic. Larger values can safely be rejected for an apparatus that is
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about 1 m in size. The second term therefore favors M1 with a value of about +7.0, which
is another punishment for the additional parameter. In total we have

ln
prob(M1|y, I)

prob(M2|y, I)
= −73.89 + 7.0 + 3.78 = −63.11,

which implies that
prob(M1|y, I) = 3.9× 10−28prob(M2|y, I).

This is a clear statement strongly favoring model 2 over model 1. We also see that this
strong preference for M2 would not be changed significantly by (unrealistic) higher values
of σz, because the dependence is only logarithmic. However, it is also clear from the result
that a smaller number of data points would have delivered much weaker evidence for M2

as compared to M1, because the decisive second term is directly proportional to N .

The fact that the second and third terms in the above result punish the use of a second
parameter in model 2 may be seen as a mathematical implementation of ‘Occam’s razor’.
This principle states, that if there are two competing hypotheses (models), the simpler
should be preferred over the more complicated one, unless there is compelling evidence for
the latter.
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